Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(7.5^{2n}+12.6^n=7.25^n+12.6^n\)
\(=7.25^n-7.6^n+19.6^n\)
\(=7\left(25^n-6^n\right)+19.6^n\)
Do \(25^n-16^n⋮\left(25-16\right)=19\);\(19⋮19\)
\(\RightarrowĐPCM\)
3,
b, Có : abcd = 100ab + cd
= 100.2.cd + cd
= 200cd + cd
= ( 200 + 1 ). cd
= 201. cd
= 3.67 + cd
suy ra abcd chia hết cho 67.
a, Có : abc = abc0
abc0 = 1000a + bc0
= 999a + a + bc0
= 999a + bca
= 27.37a + bca
Có : abc chia hết cho 27 suy ra abc0 chia hết cho 27
suy ra 27. 37a + bca chia hết cho 27
suy ra bca chia hết cho 27.
6^2n + 19^n - 2^n+1 = 6^2n + 19^n - 2.2^n = 36^n - 2^n + 19^n -2^n = (36-2) + (19-2) = 34 + 17
Vì 34 và 17 đều chia hết cho 17. Suy ra 34 + 17 chia hết cho 17. Suy ra M chia hết cho 17
+ Với n =1
=> 71+2 +82.1+1 = 73 +83 = 855 =57.15 chia hết cho 57
+ Giải sử Đúng với n =k
=> 7k+2 + 82k+1 chia hết cho 57 (1)
+ Ta chứng minh Đúng với n =k +1
=> 7n+2 +82n+1 = 7k+1+2 +82(k+1)+1 = 7. 7k+2 + 82 . 82k+1 = 7( 7k+2 + 82k+1 ) + 57.82k+1
Mà theo (1) ; 7k+2 + 82k+1 chia hết cho 57 ; 57.82k+1 chia hết cho 57
=> 7n+2 +82n+1 chia hết cho 57
+) Nếu 2n + 5 chia hết cho 3 thì (2n +5)2 chia hết cho 9 mà 51 không chia hết cho 9
=> (2n +5)2 + 51 không chia hết cho 9
+) Nếu 2n + 5 không chia hết cho 3 thì (2n +5)2 không chia hết cho 3
=> (2n +5)2 chia cho 3 dư 1 hoặc dư 2
=> (2n +5)2 có dạng 3k + 1 hoặc 3k + 2 (k \(\in\) N)
=> (2n +5)2 + 51 có dạng 3k + 52 hoặc 3k + 53
Mà số có dạng 3k + 52 và 3k + 53 đều không chia hết cho 3 nên cũng không chia hết cho 9
=> ĐPCM
(2n + 5)2 + 51 = 4n2 + 25 + 51 = 4n2 + 76
Do 76 là số chẵn, không chia hết cho 9 nên :
- Với n chia hết cho 9 và n chia hết cho 3 thì 4n2 chia hết cho 9 => 4n2 + 76 không chia hết cho 9.
- Với n là các trường hợp còn lại thì 4n2 + 76 cũng ko chia hết cho 9