Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)
+) a, b, c là các số nguyên tố lớn hơn 3
=> a, b, c sẽ có dạng 3k+1 hoặc 3k+2
=> Trong 3 số (a-b); (b-c); (c-a) sẽ có ít nhất một số chia hết cho 3
=> (a-b)(b-c)(c-a) chia hết cho 3 (1)
+) a,b,c là các số nguyên tố lớn hơn 3
=> a, b, c là các số lẻ và không chia hết cho 4
=> a,b, c sẽ có dang: 4k+1; 4k+3
=> Trong 3 số (a-b); (b-c); (c-a) sẽ có ít nhất một số chia hết cho 4
th1: Cả 3 số chia hết cho 4
=> (a-b)(b-c)(c-a) chia hết cho 64 (2)
Từ (1); (2) => (a-b)(b-c)(c-a) chia hết cho 64.3=192 vì (64;3)=1
=> (a-b)(b-c)(c-a) chia hết cho 48
th2: Có 2 số chia hết cho 4, Số còn lại chia hết cho 2
=> (a-b)(b-c)(c-a) chia hết cho 32 (3)
Từ (1) , (3)
=> (a-b)(b-c)(c-a) chia hết cho 32.3=96 ( vì (3;32)=1)
=> (a-b)(b-c)(c-a) chia hết cho 48
Th3: chỉ có một số chia hết cho 4, hai số còn lại chia hết cho 2
=> (a-b)(b-c)(c-a) chia hết cho 16
Vì (16; 3)=1
=> (a-b)(b-c)(c-a) chia hết cho 16.3=48
Như vậy với a,b,c là số nguyên tố lớn hơn 3
thì (a-b)(b-c)(c-a) chia hết cho 48
\(n=2k\)
\(\Rightarrow A=n^3-4n=n\left(n^2-4\right)=n\left(n-2\right)\left(n+2\right)\)
\(=2k\left(2k-2\right)\left(2k+2\right)\)
\(=8k\left(k-1\right)\left(k+1\right)\)
Do \(k\left(k-1\right)\left(k+1\right)\) là tích 3 số nguyên liên tiếp nên chia hết cho 6
\(\Rightarrow A⋮48\)
\(M=a^4+6a^3+11a^2+6a+24a\) 24.a chia hết cho 24 ta cần c/m
\(a^4+6a^3+11a^2+6a\) chia hết cho 24
\(a^4+6a^3+11a^2+6a=a\left(a^3+6a^2+11a+6\right)=\)
\(=a\left(a+1\right)\left(a^2+5a+6\right)=a\left(a+1\right)\left(a+2\right)\left(a+3\right)\)
Ta nhận thấy đây là tích của 4 số TN liên tiếp
Trong 4 số TN liên tiếp thì có 2 số chẵn liên tiếp 1 số chia hết cho 2 và 1 số chia hết cho 4 nên tích của chúng chia hết cho 8
Trong 4 số tự nhiên liên tiếp thì chắc chắn có 1 số chia hết cho 3
=> tích của 4 số TN liên tiếp chia hết cho 3x8=24
Nên \(a^4+6a^3+11a^2+6a⋮24\Rightarrow M⋮24\)
n>4 nữa nha bạn
Ta có:\(A=n^4-4n^3-4n^2+16n\)
\(=\left(n^4-4n^3\right)-\left(4n^2-16n\right)\)
\(=n^3\left(n-4\right)-4n\left(n-4\right)\)
\(=\left(n-4\right)\left(n^3-4n\right)\)
\(=n\left(n-3\right)\left(n^2-4\right)\)
\(=n\left(n-2\right)\left(n+2\right)\left(n-4\right)\)
Do n là số chẵn và n>4 nên đặt \(n=2k+2\left(k>1\right)\).
\(\Rightarrow A=\left(2k+2\right)\left(2k+4\right)\left(2k-2\right)2k\)
\(=16k\left(k-1\right)\left(k+1\right)\left(k+2\right)\)
\(=16\left(k-1\right)k\left(k+1\right)\left(k+2\right)\)
Do \(\left(k-1\right)k\left(k+1\right)\left(k+2\right)\) là tích 4 số nguyên dương liên tiếp nên chúng chia hết cho 2.3.4=24
Vậy A chia hết cho 16*24=384(đpcm)
A=n(n^2+1964).
Do n chia hết cho 2 >>>đặt n=2k.
A=n(n^2+1964)=2k(4k^2+1964)=8k(k^2+491)
Xét k không chia hết cho 2 thì k^2+491 chia hết cho 2 suy ra A chia hết 16.
Xét k chia hết cho 2 suy ra 8k chia hết 16
>>>A luôn chia hết cho 16.(1)
Xét k chia hết cho 3 thì A chia hết cho 3.
Xét k không chia hết cho 3 >>>k^2 chia 3 dư 1 >>>k^2+491 chia hết cho 3
>>>A luôn chia hết cho 3(2)
Từ (1),(2)>>>A chia hết cho 3 và 16, mà (3,16)=1>>>A chia hết cho 48(đpcm)
\(2\equiv-1\left(mod3\right)\Rightarrow2^{2^n}\equiv1\left(mod3\right)\)
\(4\equiv1\left(mod3\right)\Rightarrow4^n\equiv1\left(mod3\right)\)
\(16\equiv1\left(mod3\right)\)
\(\Rightarrow a=2^{2^n}+4^n+16\equiv1+1+1\equiv0\left(mod3\right)\)
Vậy \(a⋮3,\forall n\inℤ^+\)
\(ab\left(a^2-b^2\right)=a^3b-ab^3=a^3b-ab+ab-ab^3\)
\(=ab\left(a^2-1\right)-ab\left(b^2-1\right)=b\left(a-1\right)a\left(a+1\right)+a\left(b-1\right)b\left(b+1\right)\)
Do \(\left\{{}\begin{matrix}\left(a-1\right)a\left(a+1\right)\\\left(b-1\right)b\left(b+1\right)\end{matrix}\right.\) đều là tích của 3 số nguyên liên tiếp nên chúng chia hết cho 3
\(\Rightarrow b\left(a-1\right)a\left(a+1\right)-a\left(b-1\right)b\left(b+1\right)\) chia hết cho 3
\(\Rightarrow ab\left(a^2-b^2\right)\) chia hết cho 3 với mọi a, b nguyên
* Nếu a hoặc b chia hết cho 3\(\Rightarrow ab⋮3\Rightarrow ab\left(a^2-b^2\right)⋮3\)
* Nếu a và b đều chia hết cho 3 \(\Rightarrow ab⋮3\Rightarrow ab\left(a^2-b^2\right)⋮3\)
* Nếu a và b đều không chia hết cho 3 thì ta có a2 và b2 đều chia cho 3 dư 1
Đặt a2=3k+1
b2=3h+1
Suy ra \(a^2-b^2=3k+1-3h-1=3k-3h=3\left(k-h\right)⋮3\Rightarrow a^2-b^2⋮3\Rightarrow ab\left(a^2-b^2\right)⋮3\)
Vậy ab(a2-b2) chia hết cho 3 với mọi số nguyên a và b
Vi a la so chan nen a co dang 2k nen : a3+6a2+8a
= 8k3+24k2+16k = 8.k.(k2+3k+2)=8k(k+1)(k+2)
vi k , k+1 , k+2 la 3 so lien tiep nen k.(k+1).(k+2) ⋮ 6
=> 8k(k+1)(k+2) ⋮ 6.8=48 ( dpcm)