Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(F=\frac{3}{2}\cdot x^4-\frac{1}{16}\cdot x^4+\frac{1}{32}\cdot x^4-\frac{1}{4}\cdot x^4\)
\(=x^4\left(\frac{3}{2}-\frac{1}{16}+\frac{1}{32}-\frac{1}{4}\right)\)
\(=\frac{32}{39}\cdot x^4\)
Vì \(x\ne0\Rightarrow x^4>0\)
=> \(\frac{32}{39}x^4>0\forall x\ne0\)
\(A=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{99}}\)
\(\Rightarrow\dfrac{A}{3}=\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{100}}\)
\(\Rightarrow A-\dfrac{A}{3}=\dfrac{2A}{3}=\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{99}}\right)-\left(\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{100}}\right)\)
\(\Rightarrow\dfrac{2A}{3}=\left(\dfrac{1}{3^2}-\dfrac{1}{3^2}\right)+\left(\dfrac{1}{3^3}-\dfrac{1}{3^3}\right)+...+\left(\dfrac{1}{3^{99}}-\dfrac{1}{3^{99}}\right)+\left(\dfrac{1}{3}-\dfrac{1}{3^{100}}\right)=\dfrac{1}{3}-\dfrac{1}{3^{100}}\)
\(\Rightarrow2A=3\cdot\left(\dfrac{1}{3}-\dfrac{1}{3^{100}}\right)\)
\(\Rightarrow\text{A}=\dfrac{1-\dfrac{1}{3^{99}}}{2}\)
\(\Rightarrow A=\dfrac{1}{2}-\dfrac{1}{2.3^{99}}< \dfrac{1}{2}\)
bài 1:
\(\frac{x+3}{4}=\frac{x+1}{2}\Rightarrow x+3=2x+2\Rightarrow x=1\)
\(\left(x-3\right)^6=\left(3-x\right)^{10}\)xét 2 trường hợp: x = 3 và x khác 3
bài 2: nếu a = 3 thì sao?
\(F=\frac{3}{2}x^4-\frac{1}{16}x^4+\frac{1}{32}x^4-\frac{1}{4}x^4\)
\(F=\left(\frac{3}{2}-\frac{1}{16}+\frac{1}{32}-\frac{1}{4}\right)x^4\)
\(F=\frac{39}{32}x^4\)
Ta có : x4 có số mũ là 4 => x4 luôn dương với mọi x ( x khác 0 )
\(\frac{39}{32}>1\Rightarrow\frac{39}{32}>0\)
=> \(\frac{39}{32}x^4\)luôn dương với mọi x ( x khác 0 )
=> \(\frac{39}{32}x^4>0\)với mọi x ( x khác 0 )
=> \(F=\frac{3}{2}x^4-\frac{1}{16}x^4+\frac{1}{32}x^4-\frac{1}{4}x^4>0\forall x\left(x\ne0\right)\)