K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
16 tháng 6 2017
1) Đặt \(A=\left(a+b\right)\left(b+c\right)\left(c+a\right)-abc\)
\(\Rightarrow A=\left(a+b+c\right)\left(ab+bc+ca\right)-2abc\)
\(\Rightarrow A\)có dạng \(4k-2abc\left(k\in Z\right)\)
Giả sử trong 3 số \(a,b,c\)có 1 số lẻ \(\Rightarrow\)Trong \(a,b,c\)có một số chẵn \(\left(a+b+c=4\right)\)
\(\Rightarrow2abc⋮4\)
Giả sử trong \(a,b,c\)có 1 số chẵn \(\Rightarrow2abc⋮4\)
\(\Rightarrow2abc=4m\)\(\Rightarrow A=4k-4m\). Mà \(4k-4m=4\left(k-m\right)⋮4\Rightarrow A⋮4\)
Vậy \(\left(a+b\right)\left(b+c\right)\left(c+a\right)-abc⋮4\)(đpcm)
1)
a) \(\left(x-2\right)\left(x+\frac{2}{3}\right)>0\)
=> \(x-2\) và \(x+\frac{2}{3}\) cùng dấu.
Ta có 2 trường hợp:
TH1:
\(\left\{{}\begin{matrix}x-2>0\\x+\frac{2}{3}>0\end{matrix}\right.\) => \(\left\{{}\begin{matrix}x>2\\x>-\frac{2}{3}\end{matrix}\right.\) => \(x>2\left(TM\right).\)
TH2:
\(\left\{{}\begin{matrix}x-2< 0\\x+\frac{2}{3}< 0\end{matrix}\right.\) => \(\left\{{}\begin{matrix}x< 2\\x< -\frac{2}{3}\end{matrix}\right.\) => \(x< -\frac{2}{3}\left(TM\right).\)
Vậy \(x>2\) và \(x< -\frac{2}{3}.\)
Mình chỉ làm được thế thôi nhé bạn.
Chúc bạn học tốt!
1.b)
Ta có \(VT=\left(x-2,5\right)^{20}+\left(y+3,2\right)^{10}\ge0\forall x,y\)
Nên để xảy ra đẳng thức tức là để tìm được x thỏa mãn đề bài thì:
\(\left\{{}\begin{matrix}\left(x-2,5\right)^{20}=0\\\left(y+3,2\right)^{10}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2,5\\y=-3,2\end{matrix}\right.\)
Vậy...