Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. \(A=2^{2016}-1\)
\(2\equiv-1\left(mod3\right)\\ \Rightarrow2^{2016}\equiv1\left(mod3\right)\\ \Rightarrow2^{2016}-1\equiv0\left(mod3\right)\\ \Rightarrow A⋮3\)
\(2^{2016}=\left(2^4\right)^{504}=16^{504}\)
16 chia 5 dư 1 nên 16^504 chia 5 dư 1
=> 16^504-1 chia hết cho 5
hay A chia hết cho 5
\(2^{2016}-1=\left(2^3\right)^{672}-1=8^{672}-1⋮7\)
lý luận TT trg hợp A chia hết cho 5
(3;5;7)=1 = > A chia hết cho 105
2;3;4 TT ạ !!
Vì 13 là lẻ \(\Rightarrow\) 13, 132, 133, 134, 135, 136 là lẻ.
Mà lẻ + lẻ + lẻ + lẻ + lẻ + lẻ = chẵn nên 13 + 132 + 133 + 134 + 135 + 136 là chẵn. \(\Rightarrow\) 13 + 132 + 133 + 134 + 135 + 136 \(⋮\) 2
\(\Rightarrow\) ĐPCM
lg
a)C=3+3^2+3^3+...+3^100
=(3+3^2+3^3+3^4)+...+(3^96+3^97+3^98+3^99+3^100)
=(3.1+3.3+3.3^2+3.3^3)+...+(3^96.1+3^96.3+3^96.3^2+3^96.3^3)
=3.(1+3+3^2+3^3)+...+3^96.(1+3+3^2+3^3)
=3.40+...+3^96.40
=40.(3+...+3^96) chia hết cho 40
=>C chia hết cho 40
Vậy C chia hết cho 40
phần b làm tương tự
a, sai đề
b,Ta có :
C=2+2^2+2^3+2^4+2^5...+2^96+2^97+2^98+2^99+2^100
= (2+2^2+2^3+2^4+2^5)+...+(2^96+2^97+2^98+2^99+2^100)
= (2.1+2.2+2.2^2+2.2^3+2.2^4)+...+(2^96.1+2^96.2+2^96.2^2+2^96.2^3+2^96.2^4)
=2. (1+2+2^2+2^3+2^4) +...+2^96.(1+2+2^2+2^3+2^4)
=2.31+...+2^96.31
=31. (2+...+2^96) chia hết cho 31
=>C chia hết cho 31
Bài 1 : \(A=1+3+3^2+...+3^{31}\)
a. \(A=\left(1+3+3^2\right)+...+3^9.\left(1.3.3^2\right)\)
\(\Rightarrow A=13+3^9.13\)
\(\Rightarrow A=13.\left(1+...+3^9\right)\)
\(\Rightarrow A⋮13\)
b. \(A=\left(1+3+3^2+3^3\right)+...+3^8.\left(1+3+3^2+3^3\right)\)
\(\Rightarrow A=40+...+3^8.40\)
\(\Rightarrow A=40.\left(1+...+3^8\right)\)
\(\Rightarrow A⋮40\)
Bài 2:
Ta có: \(C=3+3^2+3^4+...+3^{100}\)
\(\Rightarrow C=(3+3^2+3^3+3^4)+...+(3^{97}+3^{98}+3^{99}+3^{100})\)
\(\Rightarrow3.(1+3+3^2+3^3)+...+3^{97}.(1+3+3^2+3^3)\)
\(\Rightarrow3.40+...+3^{97}.40\)
Vì tất cả các số hạng của biểu thức C đều chia hết cho 40
\(\Rightarrow C⋮40\)
Vậy \(C⋮40\)
A= 2+ 2\(^2\)+ 2\(^3\)+...+ 2\(^{99}\)+ 2\(^{100}\).
A có số các số hạng là:
( 100- 1): 1+ 1= 100( số hạng)
Ta xếp 4 số hạng 1 nhóm thì được tất cả 25 nhóm.
=> A=( 2+ 2\(^2\)+ 2\(^3\)+ 2\(^4\))+( 2\(^5\)+ 2\(^6\)+ 2\(^7\)+ 2\(^8\))+( 2\(^9\)+ 2\(^{10}\)+ 2\(^{11}\)+ 2\(^{12}\))+...+( 2\(^{93}\)+ 2\(^{94}\)+ 2\(^{95}\)+ 2\(^{96}\))+( 2\(^{97}\)+ 2\(^{98}\)+ 2\(^{99}\)+ 2\(^{100}\)).
A= 2( 1+ 2+ 2\(^2\)+ 2\(^3\))+ 2\(^5\)( 1+ 2+ 2\(^2\)+ 2\(^3\))+ 2\(^9\)(1+ 2+ 2\(^2\)+ 2\(^3\))+...+ 2\(^{93}\)( 1+ 2+ 2\(^2\)+ 2\(^3\))+ 2\(^{97}\)( 1+ 2+ 2\(^2\)+ 2\(^3\)).
A= 2x 15+ 2\(^5\)x 15+ 2\(^9\)x 15+...+ 2\(^{93}\)x 15+ 2\(^{97}\)x 15.
A= 15( 2+ 2\(^5\)+ 2\(^9\)+...+ 2\(^{93}\)+ 2\(^{97}\))\(⋮\) 15.
=> A\(⋮\) 15.
Ta có :
A = 2 + 22 + 23 + ... + 2100
= (2 + 22 + 23 + 24) + ... + (297 + 298 + 299 + 2100)
= 30 + ... + 296( 2 + 22 + 23 + 24)
= 30 + ... + 296. 30
= 30.(1 + ... + 296) chia hết cho 30
\(A=1\cdot2\cdot3\cdot...\cdot100\cdot\left(\left(1+\frac{1}{100}\right)+\left(\frac{1}{2}+\frac{1}{99}\right)+\left(\frac{1}{3}+\frac{1}{98}\right)+...+\left(\frac{1}{50}+\frac{1}{51}\right)\right)\) \(=1\cdot2\cdot3\cdot...\cdot100\cdot\left(\frac{101}{100}+\frac{101}{2\cdot99}+\frac{101}{3\cdot98}+...+\frac{101}{50\cdot51}\right)\)
\(=1\cdot2\cdot3\cdot...\cdot100\cdot101\cdot\left(\frac{1}{100}+\frac{1}{2\cdot99}+\frac{1}{3\cdot98}+...+\frac{1}{50\cdot51}\right)\)
vì \(101⋮101\Rightarrow A⋮101\)
A=1⋅2⋅3⋅...⋅100⋅((1+1100)+(12+199)+(13+198)+...+(150+151))A=1⋅2⋅3⋅...⋅100⋅((1+1100)+(12+199)+(13+198)+...+(150+151)) =1⋅2⋅3⋅...⋅100⋅(101100+1012⋅99+1013⋅98+...+10150⋅51)=1⋅2⋅3⋅...⋅100⋅(101100+1012⋅99+1013⋅98+...+10150⋅51)
=1⋅2⋅3⋅...⋅100⋅101⋅(1100+12⋅99+13⋅98+...+150⋅51)=1⋅2⋅3⋅...⋅100⋅101⋅(1100+12⋅99+13⋅98+...+150⋅51)
vì 101⋮101⇒A⋮101
1,
\(A=2^0+2^1+2^2+..+2^{2006}\)
\(=1+2+2^2+...+2^{2016}\)
\(2A=2+2^2+2^3+..+2^{2007}\)
\(2A-A=\left(2+2^2+2^3+..+2^{2007}\right)-\left(1+2+2^2+..+2^{2006}\right)\)
\(A=2^{2017}-1\)
\(B=1+3+3^2+..+3^{100}\)
\(3B=3+3^2+3^3+..+3^{101}\)
\(3B-B=\left(3+3^2+..+3^{101}\right)-\left(1+3+..+3^{100}\right)\)
\(2B=3^{101}-1\)
\(\Rightarrow B=\frac{3^{100}-1}{2}\)
\(D=1+5+5^2+...+5^{2000}\)
\(5D=5+5^2+5^3+...+5^{2001}\)
\(5D-D=\left(5+5^2+..+5^{2001}\right)-\left(1+5+...+5^{2000}\right)\)
\(4D=5^{2001}-1\)
\(D=\frac{5^{2001}-1}{4}\)
a)ta có 74n-1 = (74)n-1 = 2401n - 1 = ...1-1=...0 \(⋮\) 10 { vì 2041 có tận cùng bằng 1 nên 2041 mũ mấy cũng có tận cùng bằng 1 nên 2041n có tận cùng bằng 1}
b) ta có 92n+1+1 = (92)n . 9 + 1 = 81n .9 +1 = ..1 .9 +1=..9+1=..0 \(⋮\)10 { vì 81 có tận cùng bằng 1 nên 81 mũ mấy cũng có tận cùng bằng 1 nên 81n có tận cùng bằng 1}
cho mik mik giải nốt bài 2 cho
A=(1+2)+(2^2+2^3)+....+(2^2018+2^2019)
A=(1+2) + 2^2(1+2)+ +(2^2018(1+2)
a=3.1+2^2 x 3 +.......+2^2018x3
A=3(1+2^2+....+2^2018) chia hết cho 3 (vì 3 nhân với số nào cũng chia hết cho 3)
=>A chia hết cho 3
\(A=2^1+2^2+...+2^{100}\)
\(=\left(2+2^2\right)+\left(2^3+2^4\right)+\left(2^5+2^6\right)+...+\left(2^{99} +2^{100}\right)\)
\(=2\cdot\left(1+2\right)+2^3\cdot\left(1+2\right)+2^5\cdot\left(1+2\right)+...+2^{99}\cdot\left(1+2\right)\)
\(=2\cdot3+2^3\cdot3+2^5\cdot3+...+2^{99}\cdot3\)
\(=3\cdot\left(2+2^3+2^5+...+2^{99}\right)\)
Vì \(3\cdot\left(2+2^3+2^5+...+2^{99}\right)⋮3\)
nên \(A⋮3\).
A = 2¹ + 2² + ... + 2¹⁰⁰
= (2¹ + 2²) + (2³ + 2⁴) + ... + (2⁹⁹ + 2¹⁰⁰)
= 2.(1 + 2) + 2³.(1 + 2) + ... + 2⁹⁹.(1 + 2)
= 2.3 + 2³.3 + ... + 2⁹⁹.3
= 3.(2 + 2³ + ... + 2⁹⁹) ⋮ 3
Vậy A ⋮ 3