\(^{2^1+2^2+...+2^{100}}\) (A chia hết cho 3)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 10 2023

\(A=2^1+2^2+...+2^{100}\)

\(=\left(2+2^2\right)+\left(2^3+2^4\right)+\left(2^5+2^6\right)+...+\left(2^{99} +2^{100}\right)\)

\(=2\cdot\left(1+2\right)+2^3\cdot\left(1+2\right)+2^5\cdot\left(1+2\right)+...+2^{99}\cdot\left(1+2\right)\)

\(=2\cdot3+2^3\cdot3+2^5\cdot3+...+2^{99}\cdot3\)

\(=3\cdot\left(2+2^3+2^5+...+2^{99}\right)\)

Vì \(3\cdot\left(2+2^3+2^5+...+2^{99}\right)⋮3\)

nên \(A⋮3\).

21 tháng 10 2023

A = 2¹ + 2² + ... + 2¹⁰⁰

= (2¹ + 2²) + (2³ + 2⁴) + ... + (2⁹⁹ + 2¹⁰⁰)

= 2.(1 + 2) + 2³.(1 + 2) + ... + 2⁹⁹.(1 + 2)

= 2.3 + 2³.3 + ... + 2⁹⁹.3

= 3.(2 + 2³ + ... + 2⁹⁹) ⋮ 3

Vậy A ⋮ 3

26 tháng 12 2017

1. \(A=2^{2016}-1\)

\(2\equiv-1\left(mod3\right)\\ \Rightarrow2^{2016}\equiv1\left(mod3\right)\\ \Rightarrow2^{2016}-1\equiv0\left(mod3\right)\\ \Rightarrow A⋮3\)

\(2^{2016}=\left(2^4\right)^{504}=16^{504}\)

16 chia 5 dư 1 nên 16^504 chia 5 dư 1

=> 16^504-1 chia hết cho 5

hay A chia hết cho 5

\(2^{2016}-1=\left(2^3\right)^{672}-1=8^{672}-1⋮7\)

lý luận TT trg hợp A chia hết cho 5

(3;5;7)=1 = > A chia hết cho 105

2;3;4 TT ạ !!

1 tháng 10 2017

Vì 13 là lẻ \(\Rightarrow\) 13, 132, 133, 134, 135, 136 là lẻ.

Mà lẻ + lẻ + lẻ + lẻ + lẻ + lẻ = chẵn nên 13 + 132 + 133 + 134 + 135 + 136 là chẵn. \(\Rightarrow\) 13 + 132 + 133 + 134 + 135 + 136 \(⋮\) 2

\(\Rightarrow\) ĐPCM

21 tháng 1 2021

                                                                          lg

a)C=3+3^2+3^3+...+3^100

=(3+3^2+3^3+3^4)+...+(3^96+3^97+3^98+3^99+3^100)

=(3.1+3.3+3.3^2+3.3^3)+...+(3^96.1+3^96.3+3^96.3^2+3^96.3^3)

=3.(1+3+3^2+3^3)+...+3^96.(1+3+3^2+3^3)

=3.40+...+3^96.40

=40.(3+...+3^96) chia hết cho 40

=>C chia hết cho 40

Vậy C chia hết cho 40

phần b làm tương tự

5 tháng 2 2021

a, sai đề 

b,Ta có :

C=2+2^2+2^3+2^4+2^5...+2^96+2^97+2^98+2^99+2^100

   = (2+2^2+2^3+2^4+2^5)+...+(2^96+2^97+2^98+2^99+2^100)

  = (2.1+2.2+2.2^2+2.2^3+2.2^4)+...+(2^96.1+2^96.2+2^96.2^2+2^96.2^3+2^96.2^4)

  =2. (1+2+2^2+2^3+2^4) +...+2^96.(1+2+2^2+2^3+2^4)

  =2.31+...+2^96.31

  =31. (2+...+2^96) chia hết cho 31

=>C chia hết cho 31

1 tháng 10 2017

Bài 1 : \(A=1+3+3^2+...+3^{31}\)

a. \(A=\left(1+3+3^2\right)+...+3^9.\left(1.3.3^2\right)\)

\(\Rightarrow A=13+3^9.13\)

\(\Rightarrow A=13.\left(1+...+3^9\right)\)

\(\Rightarrow A⋮13\)

b. \(A=\left(1+3+3^2+3^3\right)+...+3^8.\left(1+3+3^2+3^3\right)\)

\(\Rightarrow A=40+...+3^8.40\)

\(\Rightarrow A=40.\left(1+...+3^8\right)\)

\(\Rightarrow A⋮40\)

1 tháng 10 2017

Bài 2:

Ta có: \(C=3+3^2+3^4+...+3^{100}\)

\(\Rightarrow C=(3+3^2+3^3+3^4)+...+(3^{97}+3^{98}+3^{99}+3^{100})\)

\(\Rightarrow3.(1+3+3^2+3^3)+...+3^{97}.(1+3+3^2+3^3)\)

\(\Rightarrow3.40+...+3^{97}.40\)

Vì tất cả các số hạng của biểu thức C đều chia hết cho 40

\(\Rightarrow C⋮40\)

Vậy \(C⋮40\)

21 tháng 1 2019

haha

28 tháng 3 2019

haha

5 tháng 12 2017

A= 2+ 2\(^2\)+ 2\(^3\)+...+ 2\(^{99}\)+ 2\(^{100}\).

A có số các số hạng là:

( 100- 1): 1+ 1= 100( số hạng)

Ta xếp 4 số hạng 1 nhóm thì được tất cả 25 nhóm.

=> A=( 2+ 2\(^2\)+ 2\(^3\)+ 2\(^4\))+( 2\(^5\)+ 2\(^6\)+ 2\(^7\)+ 2\(^8\))+( 2\(^9\)+ 2\(^{10}\)+ 2\(^{11}\)+ 2\(^{12}\))+...+( 2\(^{93}\)+ 2\(^{94}\)+ 2\(^{95}\)+ 2\(^{96}\))+( 2\(^{97}\)+ 2\(^{98}\)+ 2\(^{99}\)+ 2\(^{100}\)).

A= 2( 1+ 2+ 2\(^2\)+ 2\(^3\))+ 2\(^5\)( 1+ 2+ 2\(^2\)+ 2\(^3\))+ 2\(^9\)(1+ 2+ 2\(^2\)+ 2\(^3\))+...+ 2\(^{93}\)( 1+ 2+ 2\(^2\)+ 2\(^3\))+ 2\(^{97}\)( 1+ 2+ 2\(^2\)+ 2\(^3\)).

A= 2x 15+ 2\(^5\)x 15+ 2\(^9\)x 15+...+ 2\(^{93}\)x 15+ 2\(^{97}\)x 15.

A= 15( 2+ 2\(^5\)+ 2\(^9\)+...+ 2\(^{93}\)+ 2\(^{97}\))\(⋮\) 15.

=> A\(⋮\) 15.

5 tháng 12 2017

Ta có :

      A = 2 + 2+ 23 + ... + 2100

         = (2 + 22 + 23 + 24) + ... + (297 + 298 + 299 + 2100)

         = 30 + ... +  296( 2 + 22 + 23 + 24)

         = 30 + ... + 296. 30

         = 30.(1 + ... + 296) chia hết cho 30

30 tháng 4 2018

\(A=1\cdot2\cdot3\cdot...\cdot100\cdot\left(\left(1+\frac{1}{100}\right)+\left(\frac{1}{2}+\frac{1}{99}\right)+\left(\frac{1}{3}+\frac{1}{98}\right)+...+\left(\frac{1}{50}+\frac{1}{51}\right)\right)\)     \(=1\cdot2\cdot3\cdot...\cdot100\cdot\left(\frac{101}{100}+\frac{101}{2\cdot99}+\frac{101}{3\cdot98}+...+\frac{101}{50\cdot51}\right)\)

\(=1\cdot2\cdot3\cdot...\cdot100\cdot101\cdot\left(\frac{1}{100}+\frac{1}{2\cdot99}+\frac{1}{3\cdot98}+...+\frac{1}{50\cdot51}\right)\)

 vì \(101⋮101\Rightarrow A⋮101\)

11 tháng 1 2021

A=1⋅2⋅3⋅...⋅100⋅((1+1100)+(12+199)+(13+198)+...+(150+151))A=1⋅2⋅3⋅...⋅100⋅((1+1100)+(12+199)+(13+198)+...+(150+151))     =1⋅2⋅3⋅...⋅100⋅(101100+1012⋅99+1013⋅98+...+10150⋅51)=1⋅2⋅3⋅...⋅100⋅(101100+1012⋅99+1013⋅98+...+10150⋅51)

=1⋅2⋅3⋅...⋅100⋅101⋅(1100+12⋅99+13⋅98+...+150⋅51)=1⋅2⋅3⋅...⋅100⋅101⋅(1100+12⋅99+13⋅98+...+150⋅51)

 vì 101⋮101⇒A⋮101

18 tháng 7 2017

1,

\(A=2^0+2^1+2^2+..+2^{2006}\)

\(=1+2+2^2+...+2^{2016}\)

\(2A=2+2^2+2^3+..+2^{2007}\)

\(2A-A=\left(2+2^2+2^3+..+2^{2007}\right)-\left(1+2+2^2+..+2^{2006}\right)\)

           \(A=2^{2017}-1\)

\(B=1+3+3^2+..+3^{100}\)

\(3B=3+3^2+3^3+..+3^{101}\)

\(3B-B=\left(3+3^2+..+3^{101}\right)-\left(1+3+..+3^{100}\right)\)

\(2B=3^{101}-1\)

\(\Rightarrow B=\frac{3^{100}-1}{2}\)

\(D=1+5+5^2+...+5^{2000}\)

\(5D=5+5^2+5^3+...+5^{2001}\)

\(5D-D=\left(5+5^2+..+5^{2001}\right)-\left(1+5+...+5^{2000}\right)\)

\(4D=5^{2001}-1\)

\(D=\frac{5^{2001}-1}{4}\)

18 tháng 7 2017

các bn giúp mk nha càng nhanh càng tốt

ai nhanh mk TC cho

30 tháng 7 2018

a)ta có 74n-1 = (74)n-1 = 2401n - 1 = ...1-1=...0   \(⋮\) 10 { vì 2041 có tận cùng bằng 1 nên 2041 mũ mấy cũng có tận cùng bằng 1 nên 2041n có tận cùng bằng 1}

b) ta có 92n+1+1 = (92). 9 + 1 = 81n .9 +1 = ..1 .9 +1=..9+1=..0   \(⋮\)10 { vì 81 có tận cùng bằng 1 nên 81 mũ mấy cũng có tận cùng bằng 1 nên 81n có tận cùng bằng 1}

cho mik mik giải nốt bài 2 cho

29 tháng 10 2020

LEU LEU KO

25 tháng 9 2018

Chứng minh làm gì khi đã biết 😂

25 tháng 9 2018

A=(1+2)+(2^2+2^3)+....+(2^2018+2^2019)

A=(1+2)  +     2^2(1+2)+    +(2^2018(1+2)

a=3.1+2^2 x 3 +.......+2^2018x3

A=3(1+2^2+....+2^2018)  chia hết cho 3  (vì 3 nhân với số nào cũng chia hết cho 3)

=>A chia hết cho 3