\(A=2+2^2+2^3+...+2^{100}\)

Chứng minh rằng A chia hết cho 15

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 12 2017

A= 2+ 2\(^2\)+ 2\(^3\)+...+ 2\(^{99}\)+ 2\(^{100}\).

A có số các số hạng là:

( 100- 1): 1+ 1= 100( số hạng)

Ta xếp 4 số hạng 1 nhóm thì được tất cả 25 nhóm.

=> A=( 2+ 2\(^2\)+ 2\(^3\)+ 2\(^4\))+( 2\(^5\)+ 2\(^6\)+ 2\(^7\)+ 2\(^8\))+( 2\(^9\)+ 2\(^{10}\)+ 2\(^{11}\)+ 2\(^{12}\))+...+( 2\(^{93}\)+ 2\(^{94}\)+ 2\(^{95}\)+ 2\(^{96}\))+( 2\(^{97}\)+ 2\(^{98}\)+ 2\(^{99}\)+ 2\(^{100}\)).

A= 2( 1+ 2+ 2\(^2\)+ 2\(^3\))+ 2\(^5\)( 1+ 2+ 2\(^2\)+ 2\(^3\))+ 2\(^9\)(1+ 2+ 2\(^2\)+ 2\(^3\))+...+ 2\(^{93}\)( 1+ 2+ 2\(^2\)+ 2\(^3\))+ 2\(^{97}\)( 1+ 2+ 2\(^2\)+ 2\(^3\)).

A= 2x 15+ 2\(^5\)x 15+ 2\(^9\)x 15+...+ 2\(^{93}\)x 15+ 2\(^{97}\)x 15.

A= 15( 2+ 2\(^5\)+ 2\(^9\)+...+ 2\(^{93}\)+ 2\(^{97}\))\(⋮\) 15.

=> A\(⋮\) 15.

5 tháng 12 2017

Ta có :

      A = 2 + 2+ 23 + ... + 2100

         = (2 + 22 + 23 + 24) + ... + (297 + 298 + 299 + 2100)

         = 30 + ... +  296( 2 + 22 + 23 + 24)

         = 30 + ... + 296. 30

         = 30.(1 + ... + 296) chia hết cho 30

21 tháng 1 2021

                                                                          lg

a)C=3+3^2+3^3+...+3^100

=(3+3^2+3^3+3^4)+...+(3^96+3^97+3^98+3^99+3^100)

=(3.1+3.3+3.3^2+3.3^3)+...+(3^96.1+3^96.3+3^96.3^2+3^96.3^3)

=3.(1+3+3^2+3^3)+...+3^96.(1+3+3^2+3^3)

=3.40+...+3^96.40

=40.(3+...+3^96) chia hết cho 40

=>C chia hết cho 40

Vậy C chia hết cho 40

phần b làm tương tự

5 tháng 2 2021

a, sai đề 

b,Ta có :

C=2+2^2+2^3+2^4+2^5...+2^96+2^97+2^98+2^99+2^100

   = (2+2^2+2^3+2^4+2^5)+...+(2^96+2^97+2^98+2^99+2^100)

  = (2.1+2.2+2.2^2+2.2^3+2.2^4)+...+(2^96.1+2^96.2+2^96.2^2+2^96.2^3+2^96.2^4)

  =2. (1+2+2^2+2^3+2^4) +...+2^96.(1+2+2^2+2^3+2^4)

  =2.31+...+2^96.31

  =31. (2+...+2^96) chia hết cho 31

=>C chia hết cho 31

1 tháng 10 2017

Vì 13 là lẻ \(\Rightarrow\) 13, 132, 133, 134, 135, 136 là lẻ.

Mà lẻ + lẻ + lẻ + lẻ + lẻ + lẻ = chẵn nên 13 + 132 + 133 + 134 + 135 + 136 là chẵn. \(\Rightarrow\) 13 + 132 + 133 + 134 + 135 + 136 \(⋮\) 2

\(\Rightarrow\) ĐPCM

26 tháng 12 2017

1. \(A=2^{2016}-1\)

\(2\equiv-1\left(mod3\right)\\ \Rightarrow2^{2016}\equiv1\left(mod3\right)\\ \Rightarrow2^{2016}-1\equiv0\left(mod3\right)\\ \Rightarrow A⋮3\)

\(2^{2016}=\left(2^4\right)^{504}=16^{504}\)

16 chia 5 dư 1 nên 16^504 chia 5 dư 1

=> 16^504-1 chia hết cho 5

hay A chia hết cho 5

\(2^{2016}-1=\left(2^3\right)^{672}-1=8^{672}-1⋮7\)

lý luận TT trg hợp A chia hết cho 5

(3;5;7)=1 = > A chia hết cho 105

2;3;4 TT ạ !!

30 tháng 8 2020

a, 2n+1 chia hết cho 21=>21 thuộc Ư(2n+1)

=>2n+1 thuộc {1,3,7,21}

2n+113721
n01310

Vậy n thuộc{0,1,3,10}

30 tháng 8 2020

b, n+15 chia hết cho n-3 => n-3+18 chia hết n-3

=>18 chia hết n-3 =>n-3 thuộc Ư(18)

=>18 thuộc B(n-3)=>n-3 thuộc {1,2,3,6,9,18}

 Ta có bảng giá trị sau:

n-312369

18

n45691221

Vậy...

13 tháng 10 2018

A = 2 + 22 + 23 +...+ 260

A = (2+22) + (23 + 24) + ...+ (259 + 260)

A = 2.(1+2) + 23.(1+2) + ...+ 259.(1+2)

A = 2.3 + 23.3 + ....+ 259.3

A = 3.(2+23 +...+259) chia hết cho 3

..

các bài còn lại bn dựa zô mak lm\

13 tháng 10 2018

\(A=2+2^2+2^3+...+2^{60}\)

\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{59}+2^{60}\right)\)

\(A=6+2^2\left(2+2^2\right)+...+2^{58}\left(2+2^2\right)\)

\(A=6\cdot1+2^2\cdot6+...+2^{58}\cdot6\)

\(A=6\cdot\left(1+2^2+...+2^{58}\right)⋮3\)

CMTT

10 tháng 10 2017

\(A=2+2^2+2^3+....+2^{60}\)

\(A=\left(2+2^2+2^3+2^4\right)+....+\left(2^{57}+2^{58}+2^{59}+2^{60}\right)\)

\(A=2.\left(1+2+2^2+2^3\right)+....+2^{57}.\left(1+2+2^2+2^3\right)\)

\(A=2.15+.....+2^{57}.15\)

\(A=15.\left(2+.......+2^{57}\right)\)

Do \(15⋮15\)

\(\Rightarrow15.\left(2+.....+2^{57}\right)⋮15\)

\(\Rightarrow A⋮15\)

10 tháng 10 2017

Ta có: 

A = 2 + 22 + 23 + ... + 260

A = (2 + 22 + 23 + 24) + (25 + 26 + 27 + 28) + ... + (257 + 258 + 259 + 260)

A = 2 . (1 + 2 + 22 + 23) + 25 . (1 + 2 + 22 + 23) + ... + 257 . (1 + 2 + 22 + 23

A = 2 . 15 + 25 . 15 + ... + 257 . 15

A = 15 . (2 + 25 + ... + 257)

Vì 15 . (2 + 25 + ... + 257) chia hết cho 15 nên A chia hết cho 15.

21 tháng 1 2019

haha

28 tháng 3 2019

haha

1 tháng 10 2017

Bài 1 : \(A=1+3+3^2+...+3^{31}\)

a. \(A=\left(1+3+3^2\right)+...+3^9.\left(1.3.3^2\right)\)

\(\Rightarrow A=13+3^9.13\)

\(\Rightarrow A=13.\left(1+...+3^9\right)\)

\(\Rightarrow A⋮13\)

b. \(A=\left(1+3+3^2+3^3\right)+...+3^8.\left(1+3+3^2+3^3\right)\)

\(\Rightarrow A=40+...+3^8.40\)

\(\Rightarrow A=40.\left(1+...+3^8\right)\)

\(\Rightarrow A⋮40\)

1 tháng 10 2017

Bài 2:

Ta có: \(C=3+3^2+3^4+...+3^{100}\)

\(\Rightarrow C=(3+3^2+3^3+3^4)+...+(3^{97}+3^{98}+3^{99}+3^{100})\)

\(\Rightarrow3.(1+3+3^2+3^3)+...+3^{97}.(1+3+3^2+3^3)\)

\(\Rightarrow3.40+...+3^{97}.40\)

Vì tất cả các số hạng của biểu thức C đều chia hết cho 40

\(\Rightarrow C⋮40\)

Vậy \(C⋮40\)