Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi d là ước chung nếu có của cả a và b
==> a chia hết cho d nên 8a cũng chia hết cho d
đồng thời : b chia hết cho d nên b^2 cũng chia hết cho d ( b mũ 2 )
==> ( b^2 - 8.a ) chia hết cho d
mà : a = 1 + 2 + 3 + ... + n = n ( n + 1 ) / 2 = ( n^2 + n ) /2
và b^2 = ( 2n + 1 )^2 = 4n^2 + 4n + 1
==> : (b^2 - 8a ) = ( 4n^2 + 4n +1 ) - ( 4n^2 + 4n ) = 1
vậy : ( 8a -- b^2 ) chia hết cho d <==> 1 chia hết cho d => d = 1 (đpcm)
\(a=\frac{n\left(n+1\right)}{2}\)
2n và (2n+1) là nguyên tố cùng nhau vì là 2 số tự nhiên liên tiếp (hoặc có thể xét hiệu để chứng minh)
Ta có UCLN (2n; 2n+1)=1 (a)
Rõ ràng 2n+1 không chia hết cho 2, (a) => UCLN (n; 2n+1) = 1 (1)
2n+2 và 2n+1 cũng nguyên tố cùng nhau vì là 2 số tự nhiên liên tiếp; và 2n+2 = 2(n+1) => UCLN (n+1; 2n+1) = 1 (2)
Từ (1) và (2) => UCLN ( n(n+1) ; 2n+1) = 1 => UCLN ( n(n+1)/2 ; 2n+1) = 1 hay UCLN (a;b) = 1
Nên a và b nguyên tố cùng nhau. ĐPCM
a) Gọi ƯCLN (2n + 5 ; 3n + 7) là d. Ta có :
2n + 5 chia hết cho d => 3(2n + 5) = 6n +15 chia hết cho d
3n + 7 chia hết cho d => 2 (3n + 7) = 6n + 14 chia hết cho d
=> (6n + 15) - (6n + 14) chia hết cho d
=> 1 chia hết cho d
=> d = 1
Vậy 2n + 5 và 3n + 7 là 2 số nguyên tố cùng nhau. (đpcm)
b) Gọi ƯCLN (2n + 3 ; 3n + 4) là c. Ta có :
2n + 3 chia hết cho c => 3(2n + 3) = 6n + 9 chia hết cho c
3n + 4 chia hết cho c => 2(3n + 4) = 6n + 8 chia hết cho c
=> (6n + 9) - (6n + 8) chia hết cho c.
=> 1 chia hết cho c
=> c = 1
Vậy 2n + 3 và 3n + 4 là 2 số nguyên tố cùng nhau (đpcm)
Li-ke cho mình nhé Phạm Thị Thủy Diệp xinh đẹp!
1.
a) \(A=2+\frac{1}{n-2}\)
\(A\in Z\Rightarrow n-2\in U\left(1\right)=\left\{-1,1\right\}\Rightarrow n\in\left\{1;3\right\}\)
b) Gọi \(d=ƯC\left(2n-3;n-2\right)\)
\(\Rightarrow\begin{cases}2n-3⋮d\\n-2⋮d\end{cases}\)
\(\Rightarrow\begin{cases}2n-3⋮d\\2\left(n-2\right)⋮d\end{cases}\)
\(\Rightarrow2n-3-2\left(n-2\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=\pm1\)
Vậy A là phân số tối giản.
2.
- Từ giả thiết ta có \(P=3k+1\) hoặc \(P=3k+2\) ( \(k\in N\)* )
- Nếu \(P=3k+2\) thì \(P+4=3k+6\) là hợp số ( loại )
- Nếu \(P=3k+1\) thì \(P-2014=3k-2013\) chia hết cho 3
Vậy p - 2014 là hợp số