\(55^{n+1}-55^n\) chia hết cho 54 ( với n là số tự nhiên )

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 9 2015

câu hỏi tương tự nha bạn.

23 tháng 9 2015

55n+1-55n  chia hết cho 54 
= 55n.(551-1)
= 55n.54  chia hết cho 54
=>  55^n+1 -55^n chia hết cho 54 ( với mọi n thuộc N)

14 tháng 8 2016

\(55^{n+1}-55^n\)

\(=55^n.55-55^n.1\)

\(=55^n.\left(55-1\right)\)

\(=55^n.54\)

Vì có 54 trong tích 

=> 55n . 54 chia hết cho 54

=> Điều phải chứng minh

14 tháng 8 2016

55n+1−55= 55n.55−55= 55n(55−1)=(55n.54)⋮54

- Vậy (55n+1−55n)⋮54

3 tháng 6 2016

Ta có: 

55n+1-55n=55n(55-1)=55n.54 chia hết cho 54

Vậy 55n+1-55n chia hết cho 54 (đpcm)

3 tháng 6 2016

\(55^{n+1}-55^n=55^n\cdot\left(55-1\right)=55^n\cdot54\)chia hết cho 54 với mọi n là số tự nhiên.

20 tháng 4 2017

Bài giải:

55n + 1 – 55n chia hết cho 54 (n ∈ N)

Ta có 55n + 1 – 55n = 55n . 55 - 55n

= 55n (55 - 1)

= 55n . 54

Vì 54 chia hết cho 54 nên 55n . 54 luôn chia hết cho 54 với n là số tự nhiên.

Vậy 55n + 1 – 55n chia hết cho 54.

2 tháng 8 2017

55n + 1 – 55n chia hết cho 54 (n ∈ N)

Ta có 55n + 1 – 55n = 55n . 55 - 55n

= 55n (55 - 1)

= 55n . 54

Vì 54 chia hết cho 54 nên 55n . 54 luôn chia hết cho 54 với n là số tự nhiên.

Vậy 55n + 1 – 55n chia hết cho 54.

18 tháng 7 2018

\(55^{n+1}-55^n\)

\(=55^n.55-55^n\)

\(=55^n.\left(55-1\right)\)

\(=55^n.54\)

Ta có: \(54⋮54\)

\(\Rightarrow55^n.54⋮54\)

\(\Rightarrow55^{n+1}-55^n⋮54\)

                              đpcm

18 tháng 7 2018

\(\left(5n+2\right)^2-4\)

\(=\left(5n+2\right)^2+2^2\)

\(=\left(5n+2+2\right).\left(5n+2-2\right)\)

\(=\left(5n+4\right).\left(5n\right)\)

Vậy \(\left(5n+2\right)^2-4\)chia hết cho 5 với mọi số nguyên n

5 tháng 6 2016

 Giải

55^(n+1) -55^n 
= 55^n.55 -55^n 
=55^n( 55 - 1) 
=55^n.54 luôn luôn chia hết cho 54 ( do tích có 1 thừa số là 54)

5 tháng 6 2016

Giải:

Ta có ; 55^(n+1) -55^n

= 55^n.55 -55^n

=55^n( 55 - 1)

=55^n.54 luôn luôn chia hết cho 54 ( do tích có 1 thừa số là 54) 

5 tháng 6 2016

Giải:

Ta có ; 55^(n+1) -55^n

= 55^n.55 -55^n

=55^n( 55 - 1)

=55^n.54 luôn luôn chia hết cho 54 ( do tích có 1 thừa số là 54) 

5 tháng 6 2016

Giải:

Ta có ; 55^(n+1) -55^n

= 55^n.55 -55^n

=55^n( 55 - 1)

=55^n.54 luôn luôn chia hết cho 54 ( do tích có 1 thừa số là 54) 

21 tháng 6 2017

Ta có: \(55^{n+1}-55^n=55^n.55-55^n\)\(55^n\left(55-1\right)=55^n.54\)

Mà  \(55^n.54⋮54\)(luôn đúng) => \(55^{n+1}-55^n⋮54\)(ĐPCM)

10 tháng 8 2017

mày chỉ biết dựa vào olm thôi à tự nghĩ đi chứ

10 tháng 8 2017

55^n+1 - 55^n=55^n x 55 -55^n=55^n(55-1)=55^n x 54 vậy luôn chia hết cho 54

k mk nha

AH
Akai Haruma
Giáo viên
29 tháng 11 2023

Lời giải:

$55^{n+1}-55^2=55^2[55^{n-1}-1]=55^2(55-1)(55^{n-2}+55^{n-3}+...+55+1)$

$=54.55^2(55^{n-2}+55^{n-3}+...+55+1)\vdots 54$ 

Ta có đpcm.