Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nếu n là số lẻ thì
n2 chia 8 dư 1
4n chia 8 dư 4
5 chia 8 dư 5
=> (1 + 4 + 5) không chia hết cho 8
=>n2 + 4n + 5 không chia hết cho 8 với n là số lẻ
a) Nhóm 4 số hạng thành 1 cạp ta có:
A = 5.(1+5+5^2+5^3) + 5^5.(1+5+5^2+5^3) + .....+ 5^97+ (1+5+5^2+5^3)
A = 5. 156 + 5^5 . 156 + ..... + 5^97.156
A = 12 . 13.(5+5^5+...+5^97) chia hết cho 13
Vậy A chia hết cho 13
b) A = 5+5^2+5^3+...+5^100
A= 5.(1+5+5^2+5^3+...+5^99)
A= n^2 suy ra 5.(1+5+5^2+...+5^99) = n^2
suy ra (1+5+5^2+....+5^99) chia hết cho 5 vì vế trái có dạng n.n
nhưng 1 không chia hết cho 5 còn 5 ; 5^2 ; 5^3 ... 5^99 đều chi hết cho 5
nên (1+5+5^2+...+5^99) không chia hết cho 5
suy ra 5.(1+5+5^2+...+5^99) = n^2 ( vô lí)
suy ra A không phải là số chính phương
Vậy A không phải là số chính phương.
Nhớ k cho mình nếu bạn thấy đúng nhé!
a) ta có A=5+5^2+5^3+........+5^100
=>A=(5+5^2+5^3+5^4)+(5^5+5^6+5^7+5^8)+..........+(5^97+5^98+5^99+5^100)
=>A=5.(1+5+5^2+5^3)+5^5.(1+5+5^2+5^3)+.............+5^97.(1+5+5^2+5^3)
=>A=5.156+5^5.156+.........+5^97.156
=>A=12.13.(5+5^5+..........+5^97) chia hết cho 13.
Vậy A chia hết cho 13.
b) ta có: A=5+5^2+5^3+.......+5^100
VÌ mỗi lũy thừa trên có số mũ lớn hơn 0 => mỗi lũy thừa trên có chữ số tận cùng là 5.
=> A=(5+5^2)+(5^3+5^4)+.....+(5^99+5^100)
mỗi nhóm trên có cstc là 0.
=> A có cstc là 0.
=>A là số chính phương.
Vậy A là số chings phương.
NÈ CHỮ SỐ TẬN CÙNG MÌNH VIẾT TẮT LÀ cstc
vì khi lấy giá trị tuyệt đối của -5 ta có :| -5 | cũng =5
vậy để a thỏa mãn yêu cầu trên thì tức là khi lấy giá trị tuyệt đối thì a phải lớn hơn -5 ( như là số : -4 ;-3;..) thì khi lấy ra giá trị tuyệt đối thì a mới nhỏ hơn 5 được
vậy suy ra ta có : -5 < a < 5
mình tính ra tổng S có tận cùng là 1 và 6 có đúng k ? nếu đúng thì kết luận như thế nào?
B=\(1+3^2+3^4+...+3^{100}\)
9B=\(3^2+3^4+...+3^{100}\)
9B-B=\(\left(3^2+3^4+...+3^{102}\right)-\left(1+3^2+3^4+...+3^{100}\right)\)
8B=\(3^{102}-1\)
B=\(\left(3^{102}-1\right):8\)
C=\(1+5^3+5^6+...+5^{99}\)
125C=\(5^3+5^6+5^9+...+5^{102}\)
125C-C=\(\left(5^3+5^6+5^9+...+5^{102}\right)-\left(1+5^3+5^6+...+5^{99}\right)\)
124C=\(5^{102}-1\)
C=\(\left(5^{102}-1\right):124\)
A=5+52+53+...+5100
A =5(1+5)+53 (1+5)+55 (1+5)+...+599 (1+6)
A =5.6+53 .6+55 .6+...+599 .6
A =6.(5+53+55+57+...+599 )
Vì 6 là số chính phương nên A là số chính phương.
Đặt A=.........
Tìm 5A
Rùi sao đó tìm 4A suy ra tìm đc A
Rồi đó dễ rồi đấy