K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 12 2016

\(A=5^{2014}-5^{2013}+5^{2012}=5^{2012}\left(5^2-5^1+5^0\right)=21.5^{2012}\\ \)

\(\hept{\begin{cases}105=21.5\\A=21.5^{2012}\end{cases}}\Rightarrow\frac{A}{105}=\frac{21.5^{2012}}{21.5}=5^{2011}\Rightarrow dpcm\)

25 tháng 12 2016

5^2014-5^2013+5^2012=5^2012(5^2-5^1+1)

                                  =5^2012.21

                                  =5^2011.5.21

                                  =5^2011.105

Vậy 5^2014-5^2013+5^2012 chia hết cho 105

3 tháng 2 2021

Ta có:

A= 52014-52013+52012⋮105

A= 5^2011(5^3- 5^2)+5

A=5^2011(125- 25)+5

A= 5^2011. 105

=> A:105​(đpcm)

5^2014-5^2013+5^2012

=5^2012(5^2-5^1+1)

 =5^2012.21 =5^2011.5.21

=5^2011.105

Vậy 5^2014-5^2013+5^2012 chia hết cho 105

chúc bạn học tốt

25 tháng 10 2016

3^(3*15)+4.4^(2*51)

(27)^15+4.16^51

có 27 chia 13 dư 1 

16 chia 13 dư 3 =>4.16^51 chia 3 dư 12

1+12=13 vậy chia hết cho 13

27 chia 11 dư 5

16 chia 11 dư 5

5+5*4=25 ko chia cho 11

2 tháng 8 2017

hay nhưng viết mỏi tay

14 tháng 10 2021

\(a,=7^4\left(7^2+7-1\right)=7^4\cdot55=7^4\cdot5\cdot11⋮11\)

14 tháng 10 2021

\(7^6+7^5-7^4=7^4\cdot55⋮11\)

14 tháng 10 2021

4/ Chứng minh rằng :a.     76 +75 – 74 chia hết cho 11 . bạn nào giúp mình với (giải thích cho mình hiểu luôn nha các bạ... - Hoc24

14 tháng 10 2021

\(7^6+7^5-7^4\)

\(=7^4\left(7^2+7-1\right)\)

\(=7^4\cdot55⋮11\)

6 tháng 6 2017

Cái đó chưa chắc đâu bn,vì:

3*4*5=60 ko chia hết cho 24.

MK nghĩ tích 3 số liên tiếp luôn chia hết cho 6 thôi ko thể là 24 đc vì trong 3 số luôn có 1 số chia hết cho 3 và ít nhất 1 số chia hết cho 2 nên tích luôn chia hết cho 6.

12 tháng 12 2016

đây là toán lớp mấy vậy

12 tháng 12 2016

Muốn vip à 

18 tháng 1 2021

a)

Ta có: \(222^{333}=\left(222^3\right)^{111}\equiv1^{111}=1\left(mod13\right)\)

\(\Rightarrow222^{333}+333^{222}\equiv1+333^{222}=1+\left(333^2\right)^{111}\)

\(\equiv1+12^{111}\equiv1+12^{110}\cdot12\equiv1+\left(12^2\right)^{55}\cdot12\)

\(\equiv1+1\cdot12\equiv13\equiv0\left(mod13\right)\)

Vậy $222^{333}+333^{222}$ chia hết cho $13.$

b) Ta có:

\(3^{105}\equiv\left(3^3\right)^{35}\equiv1^{35}\equiv1\) (mod13)

\(\Rightarrow3^{105}+4^{105}\equiv1+4^{105}\equiv1+\left(4^3\right)^{35}\)

\(\equiv1+12^{35}\equiv1+\left(12^2\right)^{17}\cdot12\equiv1+1\cdot12\equiv13\equiv0\left(mod13\right)\)

Vậy $3^{105}+4^{105}$ chia hết cho $13.$

Lại có:

\(3^{105}\equiv\left(3^3\right)^{35}\equiv5^{35}\equiv\left(5^5\right)^7\equiv1\left(mod11\right)\)

\(4^{105}\equiv\left(4^3\right)^{35}\equiv9^{35}\equiv\left(9^5\right)^7\equiv1\left(mod11\right)\)

Từ đây:\(3^{105}+4^{105}\equiv1+1\equiv2\left(mod11\right)\)

Vậy $3^{105}+4^{105}$ không chia hết cho $11.$

P/s: Rất lâu rồi không giải, không chắc.

8 tháng 6 2020

Xét 32 số có dạng 32,3232,...,3232...3232

Theo nguyên lí Diriclet tồn tại 2 số có cùng số dư khi chia cho số 31

Giả sử 2 số đó là 32...32,32...32( lần lượt có m và n cặp 32, n>m)

Khi đó hiệu 2 số đó chia hết cho 31, tức (32...32).10m( n-m cặp 32 )

Mặt khác (10m,31)=1

Từ đó suy ra số 32...32 (n-m cặp 32) chia hết cho 31