Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=5^{2014}-5^{2013}+5^{2012}=5^{2012}\left(5^2-5^1+5^0\right)=21.5^{2012}\\ \)
\(\hept{\begin{cases}105=21.5\\A=21.5^{2012}\end{cases}}\Rightarrow\frac{A}{105}=\frac{21.5^{2012}}{21.5}=5^{2011}\Rightarrow dpcm\)
5^2014-5^2013+5^2012=5^2012(5^2-5^1+1)
=5^2012.21
=5^2011.5.21
=5^2011.105
Vậy 5^2014-5^2013+5^2012 chia hết cho 105
\(3^{2014}-3^{2013}+3^{2012}=3^{2012}\left(9-3+1\right)\)
\(=3^{2012}\cdot7=3^{2010}\cdot63⋮63\)
Dpcm
32014 - 32013 + 32012
= 32012 x 32 - 32012 x 3 + 32012 x 1
= 32012 x 9 - 32012 x 3 + 32012 x 1
= 32012 x (9 - 3 + 1)
= 32012 x 7
= 32010 x 32 x 7
= 32010 x 9 x 7
= 32010 x 63
Mà 63 \(⋮\) 63 nên 32010 x 63 \(⋮\) 63 => 32014 - 32013 + 32012 \(⋮\)63
Ta có :
\(3^{2014}+3^{2013}-3^{2012}\)
\(=3^{2012}\left(3^2+3-1\right)\)
\(=3^{2012}.11\)
\(\Rightarrow3^{2014}+3^{2013}-3^{2012}\)
\(\RightarrowĐPCM\)
\(P\left(x\right)=x^5-2013x^4+2013x^3-2013x^2+2013x-2014\)
\(=x^5-2012x^4-x^4+2012x^3+x^3-2012x^2-x^2+2012x+x-2014\)
\(=\left(x^5-x^4\right)+\left(-2012x^4+2012x^3\right)+\left(x^3-x^2\right)+\left(-2012x^2+2012x\right)+x-2014\)
\(=x^4\left(x-1\right)-2012x^3\left(x-1\right)+x^2\left(x-1\right)-2012x\left(x-1\right)+\left(x-1\right)-2013\)
\(=\left(x-1\right)\left(x^4-2012x^3+x^2-2012x+1\right)-2013\)
\(=\left(x-1\right)\left(x^3\left(x-2012\right)+x\left(x-2012\right)+1\right)-2013\)
Thay x=2012 ta có :
\(P\left(x\right)=\left(2012-1\right)\left(2012^3\left(20112-2012\right)+2012\left(2012-2012\right)+1\right)-2013\)
\(=2011\left(2012^3\cdot0+2012\cdot0+1\right)-2013\)
\(=2011\cdot\left(1\right)-2013\\ =-2\)
\(P\left(x\right)=x^5-\left(2012+1\right)x^4+\left(2012+1\right)x^3-\left(2012+1\right)x^2+\left(2012+1\right)x-\left(2012+2\right)\)
\(=x^5-\left(x+1\right)x^4+\left(x+1\right)x^3-\left(x+1\right)x^2+\left(x+1\right)x-\left(x+2\right)\)
\(=x^5-x^5-x^4+x^4+x^3-x^3-x^2+x^2+x-x-2\)
\(\Rightarrow P\left(x\right)=-2\)
a.2014100 + 201499
=201499.(2014+1)
=201499.2015
=> 2014100 + 201499 chia hết cho 2015
b.31994 + 31993 _ 31992
=31992.(32+3-1)
=31992.11
=>31994 + 31993 _ 31992 chia hết cho 11
c. 413 _ 325 _ 88
=(22)13-(25)5-(23)8
=226-225-224
=224.(22-2-1)
=224.5
=> 413 _ 325 _ 88 chia hết cho 5
a)\(2014^{100}+2014^{99}=2014^{99}.\left(2014+1\right)=2014^{99}.2015⋮2015\left(\text{Đ}PCM\right)\)
b)\(3^{1994}+3^{1993}-3^{1992}=3^{1992}.\left(3^2+3-1\right)=3^{1992}.\left(9+3-1\right)=3^{1992}.11⋮11\left(\text{Đ}PCM\right)\)
c)\(4^{13}-32^5-8^8=\left(2^2\right)^{13}-\left(2^5\right)^5-\left(2^3\right)^8=2^{26}-2^{25}-2^{24}=2^{24}.\left(2^2-2-1\right)\)
Đề sai rồi bạn 2^14 luôn tận cùng chẵn =>2^14 không chia hết cho 5
Chúc bạn học tốt
Ta có:
\(A=5^{2014}-5^{2013}+5^{2012}\)
\(A=5^{2011}\left(5^3-5^2+5\right)\)
\(A=5^{2011}\left(125-25+5\right)\)
\(A=5^{2011}.105\)
\(\Rightarrow A⋮105\)
=> ĐPCM.