Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1 bạn dùng chia hết cho 13
Câu 2 bạn cộng cả 2 vế với z^4 rồi dùng chia 8
Câu 3 bạn đặt a^4n là x thì x sẽ chia 5 dư 1 và chia hết cho 4 hoăc chia 4 dư 1
Khi đó ta có x^2+3x-4=(x-1)(x+4)
đến đây thì dễ rồi
Câu 4 bạn xét p=3 p chia 3 dư 1 p chia 3 dư 2 là ra
Câu 6 bạn phân tích biểu thức của đề thành nhân tử có nhân tử x-2
Câu 5 mình nghĩ là kẹp giữa nhưng chưa ra
+\(n=5k\)
\(P=4.5k^3+6.5k^2+3.5k-17\) không chia hết cho 5
+\(n=5k+1\)
\(P=4\left(5k+1\right)^3+6\left(5k+1\right)^2+3\left(5k+1\right)-17\)
\(=4\left(125k^3+75k^2+15k+1\right)+6\left(25k^2+10k+1\right)+15k+3-17\)
\(=4.125k^3+18.25k^2+135k-4\)không chia hết cho 5
+ tương tự ...........
Mình mới chỉ có thế thôi , chưa nghĩa ra cách khác ..
Giả sử \(4n^4+4n^3+6n^2+3n+2\) là một số chính phương
Đặt A2=\(4n^4+4n^3+6n^2+3n+2\)
Ta có \(A^2=4n^4+4n^3+6n^2+3n+2=\left(4n^4+4n^3+5n^2+2n+1\right)+\left(n^2+n+1\right)=\left(4n^4+n^2+1+4n^3+4n^2+2n\right)+\left(n^2+n+1\right)=\left(2n^2+n+1\right)^2+\left(n^2+n+1\right)\)
Ta có \(n^2+n+1>0\)
Vậy \(A^2>\left(2n^2+n+1\right)^2\Leftrightarrow A>2n^2+n+1\left(1\right)\)
Ta có \(A^2=4n^4+4n^3+6n^2+3n+2=\left(4n^4+4n^3+9n^2+4n+4\right)-\left(3n^2+n+2\right)=\left(4n^4+n^2+4+4n^3+8n^2+4n\right)-\left(3n^2+n+2\right)=\left(2n^2+n+2\right)^2-\left(3n^2+n+2\right)\)
Ta có \(3n^2+n+2>0\)
Vậy \(A^2< \left(2n^2+n+1\right)^2\Leftrightarrow A< 2n^2+n+1\left(2\right)\)
Từ (1),(2)\(\Leftrightarrow2n^2+n+1< A< 2n^2+n+2\)(vô lý với n\(\in Z\))
Vậy trái với giả sử
Vậy \(4n^4+4n^3+6n^2+3n+2\) không là số chính phương với \(n\in Z\)