K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

sorry anh nha em mới học lớp 5 thôi !

sory anh nha em mới chỉ học lớp 5 mà thôi xin anh thông cảm !

14 tháng 1 2018

Ta có:
\(2.\left(10a+b\right)-\left(3a+2b\right)=20a+2b-3a-2b\)
\(=17a\)
\(\text{Vì 17⋮}17\Rightarrow17a⋮17\)
\(\Rightarrow2.\left(10a+b\right)-\left(3a+2b\right)⋮17\)
\(\text{Vì }3a+2b⋮17\Rightarrow2.\left(10a+b\right)\)
\(\text{Mà (2,10)=1}\Rightarrow10a+b⋮17\)
=> 3a + 2b chia hết cho 17 khi 10a + b chia hết cho 17 (a,b ∈ Z ) (đpcm )

11 tháng 2 2020

nhỡ 2.(10a+b) và (3a+2b) không chia hết cho 17 nhưng khi 2.(10a+b)-(3a-2b) lại chia hết cho 17 thì sao

29 tháng 3 2016

Có 3a+2b :17

=> 3a+2b+17a :17

20a+2b :17

2(10a+b) :17. Mà ƯCLN(2;17)=1 => 10a+b :17

Ủng hộ mk nha

29 tháng 3 2016

ths bn nhá

ta đặt A=10a+b

B=3a+2b

có 2A-B=2(10a+b)-(3a+2b)

2A-B=(20a+2b)-(3a+2b)

2A-B=17a chia hết cho 17

vì A chia hết cho 17 nên 2A chia hết cho 17

mà 2A-B chia hết cho 17 nên B chia hết cho 17

chứng minh 1a+b chia hết cho 17 thì 3a+2b chia hết cho 17

 

xin lỗi dòng cuối mình viết là 10a+b chứ ko phải 1a+b

23 tháng 3 2018

3a + 2b chia hết cho 17

=> 3a + 2b + 17 chia hết cho 17.

=> 20a + 2b chia hết cho 17

=> 2.(10a + b) chia hết cho 17

mà: (2; 7) = 1

=> 3a + 2b chia hết cho 17

<=> 10a + b chia hết cho 17

11 tháng 8 2016

Đặt A = 3a + 2b; B = 10a + b

Xét biểu thức: 2B - A = 2.(10a + b) - (3a + 2b)

                               = (20a + 2b) - (3a + 2b)

                              = 20a + 2b - 3a - 2b

                              = 17a

+ Nếu A chia hết cho 17, do 17a chia hết cho 17 => 2B chia hết cho 17

Mà (2;17)=1 => B chia hết cho 17

+ Nếu B chia hết cho 17 => 2B chia hết cho 17, do 17a chia hết cho 17 

=> A chia hết cho 17

Vậy 3a + 2b chia hết cho <=> 10a + b chia hết cho 17 (a,b thuộc Z) (đpcm)

11 tháng 8 2016

taco;17achia het cho17

suy ra 17a+3a+2b chia het cho17

suy ra20a+2bchia het cho17

rút gọn cho 2

suyra 10a+b chia hết cho 17

23 tháng 6 2015

Bài 1 : \(3^{n+2}\)\(-2^{n+2}\)\(3^n-2^n\)\(\left(3^{n+2}+3^n\right)-\left(2^{n+2}+2^n\right)\)

 = \(3^n\)\(\left(3^2+1\right)\) \(-2^n\left(2^2+1\right)\)\(3^n\times10-2^{n-1}\times10\)

= 10 \(\times\left(3^n+2^{n+1}\right)\)

chia hết cho 10

Bài 2 : 

\(A=75.\left(4^{2004}+4^{2003}+...+4^2+4+1\right)+25\) =\(75+25+75.4.\left(4^{2003}+4^{2003}+....+4^2+4\right)\)

\(100+300.\left(4^{2003}+4^{2003}+...+4^2+4\right)\)

chia het cho 100

12 tháng 4 2018

ehdhfhdfh

a) Ta có: 3a+2b⋮17

⇔8(3a+2b)⋮17

Ta có: 8(3a+2b)+10a+b

=24a+16b+10a+b

=34a+17b

=17(2a+b)⋮17

hay 8(3a+2b)+(10a+b)⋮17

mà 8(3a+2b)⋮17(cmt)

nên 10a+b⋮17(đpcm)

b) Ta có: \(F\left(0\right)=a\cdot0^2+b\cdot0+c=c\)

\(F\left(1\right)=a\cdot1^2+b\cdot1+c=a+b+c\)

\(F\left(-1\right)=a\cdot\left(-1\right)^2+b\cdot\left(-1\right)+c=a-b+c\)

mà F(x)⋮3

nên F(0)⋮3; F(1)⋮3; F(-1)⋮3

hay c⋮3(đpcm 3); F(1)+F(-1)⋮3; F(1)-F(-1)⋮3

Ta có: F(1)+F(-1)⋮3(cmt)

⇔a+b+c+a-b+c⋮3

hay 2a+2c⋮3

⇔a+c⋮3

mà c⋮3(cmt)

nên a⋮3(đpcm1)

Ta có: F(1)-F(-1)⋮3(cmt)

⇔a+b+c-a+b-c⋮3

hay 2b⋮3

mà 2\(⋮̸\)3

nên b⋮3(đpcm2)