Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(2.\left(10a+b\right)-\left(3a+2b\right)=20a+2b-3a-2b\)
\(=17a\)
\(\text{Vì 17⋮}17\Rightarrow17a⋮17\)
\(\Rightarrow2.\left(10a+b\right)-\left(3a+2b\right)⋮17\)
\(\text{Vì }3a+2b⋮17\Rightarrow2.\left(10a+b\right)\)
\(\text{Mà (2,10)=1}\Rightarrow10a+b⋮17\)
=> 3a + 2b chia hết cho 17 khi 10a + b chia hết cho 17 (a,b ∈ Z ) (đpcm )
nhỡ 2.(10a+b) và (3a+2b) không chia hết cho 17 nhưng khi 2.(10a+b)-(3a-2b) lại chia hết cho 17 thì sao
ta đặt A=10a+b
B=3a+2b
có 2A-B=2(10a+b)-(3a+2b)
2A-B=(20a+2b)-(3a+2b)
2A-B=17a chia hết cho 17
vì A chia hết cho 17 nên 2A chia hết cho 17
mà 2A-B chia hết cho 17 nên B chia hết cho 17
chứng minh 1a+b chia hết cho 17 thì 3a+2b chia hết cho 17
xin lỗi dòng cuối mình viết là 10a+b chứ ko phải 1a+b
Có 3a+2b :17
=> 3a+2b+17a :17
20a+2b :17
2(10a+b) :17. Mà ƯCLN(2;17)=1 => 10a+b :17
Ủng hộ mk nha
Tham khảo :
Ta có:
3a+2b⋮17
⇒9(3a+2b)⋮17⇔27a+18b⋮17(1)
Mặt khác: 17a+17b⋮17(2)
Từ (1);(2)⇒27a+18b−(17a+17b)⋮17
⇔10a+b⋮17
Ta có đpcm.
3a + 2b chia hết cho 17
=> 3a + 2b + 17 chia hết cho 17.
=> 20a + 2b chia hết cho 17
=> 2.(10a + b) chia hết cho 17
mà: (2; 7) = 1
=> 3a + 2b chia hết cho 17
<=> 10a + b chia hết cho 17
Theo bài ra ta có:
(3a+2b) ⋮ 17 => 3a +2b +17a ⋮ 17 (vì 17⋮ 17)
=> 10a +2b ⋮ 17
<=> 2.(10a +b ) ⋮ 17
Mà (2;7)=1
=> 10a+b ⋮ 17 => Đpcm
Vậy (3a +2b) ⋮ 17 <=> (10a +b)⋮ 17
+, 3a+2b chia hết cho 17
=> 9.(3a+2b) chia hết cho 17
=> 27a + 18b chia hết cho 17
Mà 17a và 17b đều chia hết cho 17
=> 27a+18b-17a-17b chia hết cho 17
=> 10a+b chia hết cho 17
+, 10a+b chia hết cho 17
=> 10a+b+17a+17b chia hết cho 17
=> 27a+18b chia hết cho 17
=> 9.(3a+2b) chia hết cho 17
=> 3a+2b chia hết cho 17 ( vì 9 và 17 là 2 số nguyên tố cùng nhau )
Vậy ............
Tk mk nha
\(3a+2b⋮17\)\(\left(a,b\inℤ\right)\)
\(\Rightarrow10\cdot\left(3a+2b\right)⋮17=\left(30a+20b\right)⋮17\)
\(10a+b⋮17\)
\(\Rightarrow3\cdot\left(10a+b\right)⋮17=\left(30a+3b\right)⋮17\)
\(\Rightarrow\left(30a+20b\right)-\left(30a+3b\right)⋮17\)
\(\Rightarrow30a+20b-30a-3b⋮17\)
\(\Rightarrow17b⋮17\)
Có \(17⋮17\)nên \(10a+b⋮17\)
đặt 3a+2b=x ; 10a+b=y
Ta có:x chia hết cho17; cần chứng minhy chia hết cho 17
Xét :10x-3y=10.(3a+2b)-3(10a+b)=30a+20b-30a+3b=17b chia hết cho 17(vì 17 chia hết cho 17)
Nhận tháy:x chia hết cho 17 => 10x chia hết cho 17=>3y chia hết cho 17 mà(3;17)=1 =>y chia hết cho 17 =>10a+b chia hết cho17
VẬY:10a+b chia hết cho 17=>ĐPCM
3a + 2b chia hết cho 17
=> 3a + 2b + 17a chia hết cho 17 (17a chia hết cho 17)
=> 20a + 2b chia hết cho 17
=> 2.(10a + b) chia hết cho 17
mà (2;7)=1
=> 10a + b chia hết cho 17
Vậy 3a + 2b chia hết cho 17 <=> 10a + b chia hết cho 17.
Chiều thứ nhất như bạn Minh Hiền đã CM.(1)
Chiều thứ hai ta làm như sau:
Ta có: 2(10a+b)-(3a+2)
=(20a+2b)-(3a+2b)
=17a\(⋮\)17
Vì (10a+b)\(⋮\)17 nên (20a+2b)\(⋮\)17 mà 17a\(⋮\)17 => (3a+2b)\(⋮\)17(2)
Từ (1) và (2) ta suy ra:(3a+2b)\(⋮\)17\(\Leftrightarrow\)(10a+b)\(⋮\)17(với a,b là số nguyên)