K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 7 2019

Bài 2 thôi em dùng đồng dư cho chắc:v

a) \(21^2\equiv41\left(mod200\right)\Rightarrow21^{10}\equiv41^5\equiv1\left(mod200\right)\)

Suy ra đpcm.

b) \(39^2\equiv1\left(mod40\right)\Rightarrow39^{20}\equiv1\left(mod40\right)\)

Mặt khác \(39^2\equiv1\left(mod40\right)\Rightarrow39^{12}\equiv1\Rightarrow39^{13}\equiv39\left(mod40\right)\)

Suy ra \(39^{20}+39^{13}\equiv1+39\equiv40\equiv0\left(mod40\right)\)

Suy ra đpcm

c) Do 41 là số nguyên tố và (2;41) = 1 nên:

\(2^{20}\equiv1\left(mod41\right)\) suy ra \(2^{60}\equiv1\left(mod41\right)\)

Dễ dàng chứng minh \(5^{30}\equiv40\left(mod41\right)\)

Suy ra đpcm.

d) Tương tự

8 tháng 7 2018

Ta có: 20052007 + 20072005 = (20052007 + 12007 ) + (20072005 - 12005 )

Vì \(2005^{2007}+1^{2007}\)luôn chia hết cho \(2005+1=2006\left(1\right)\)

    \(2007^{2005}-1^{2005}\)luôn chia hết cho \(2007-1=2006\left(2\right)\)

\(\left(1\right)\left(2\right)\Rightarrow\left(2005^{2007}+1^{2007}\right)+\left(2007^{2005}-1^{2005}\right)⋮2006\)

                 \(\Rightarrow2005^{2007}+2007^{2005}⋮2006\)

Vậy \(2005^{2007}+2007^{2005}⋮2006\)

21 tháng 7 2015

2005+20052+20053+...+200510

=2005.(1+2005)+20053.(1+2005)+...+20059.(1+2005)

=2005.2006+20053.2006+...+20059.2006

=2006.(2005+20053+...+20059)

=>2005+20052+20053+...+200510 chia hết cho 2006

21 tháng 7 2015

= 2005.(1+2005)+20052.(1+2005)+...+20059.(1+2005)

= 2006.(2005+20052+...+20059

=> tổng trên chia hết cho 2006

nhầm chút

4 tháng 10 2019

Ta có: \(2005\equiv-1\left(mod2006\right)\)

\(\Rightarrow2005^{2007}\equiv-1\left(mod2006\right)\)

Lại có: \(2007=1\left(mod2006\right)\)

\(\Rightarrow2007^{2005}\equiv1\left(mod2006\right)\)

\(\Rightarrow2005^{2007}+2007^{2005}\equiv0\left(mod2006\right)\)

Vậy \(2005^{2007}+2007^{2005}⋮2006\left(đpcm\right)\)

4 tháng 10 2019

mod là gì

12 tháng 8 2016

a) 20062006 - 20062005 = 20062005 x 2006 - 20062005 = 20062005 x (2006 - 1) = 20062005 x 2005 chia hết cho 2005  => 20062006 - 20062005 chia hết cho 2005.

b) 79m+1 - 79= 79m x 79 - 79m = 79x (79 - 1) = 79m x 78 chia hết cho 78  => 79m+1 - 79 chia hết cho 78.

c) 25+ 513 = (52)7 + 513 = 514 + 513 = 512 x 5 x (5 + 1)  = 512 x 5 x 6 = 512 x 30 chia hết cho 30  => 257 + 513 chia hết cho 30.

d) 106 - 57 = (2 x 5)6 - 57 = 26 x 56 - 57 = 56 x (26 - 5) = 5x (64 - 5) = 56 x 49 chia hết cho 49  => 106 - 57 chia hết cho 49.

e) 710 - 79 - 7= 78 x (72 - 7 - 1) = 78 x (49 - 7 - 1) = 78 x 41 chia hết cho 41  => 710 - 79 - 78 chia hết cho 41.

f)817 - 279 - 913 = (34)7 - (33)9 - (32)13 = 328 - 327 - 326 = 324 x 32 x (32 - 3 - 1) = 324 x 9 x 5 = 324 x 45 chia hết cho 45  => 817 - 279 - 913 chia hết cho 45.

12 tháng 8 2016

Cảm ơn