\(\frac{51}{2}x\frac{52}{2}x\frac{53}{2}x...x\frac{100}{2...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 12 2015

b:

3/2 x 4/3 x 5/4 x ......... x 8/7 x 9/8

Ta loai bo so giong nhau o TS va MS

Ta duoc 9/2

16 tháng 4 2017

anh chiu

16 tháng 4 2017

chán thế

Mình không chắc đã đúng đâu nhưng mình cứ giair thử nhé ! 

Ta có : 

A = \(\frac{1}{1}-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}\)+ ... + \(\frac{1}{99}-\frac{1}{100}\)

\(\left(\frac{1}{1}+\frac{1}{3}+\frac{1}{5}+...\frac{1}{99}\right)\)\(\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}...+\frac{1}{100}\right)\)

\(\left(\frac{1}{1}+\frac{1}{3}+\frac{1}{5}+...\frac{1}{99}\right)\)\(\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}...+\frac{1}{100}\right)\)

\(\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)x 2 

\(\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)\(\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)\)

\(\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}\)= B 

Vậy , A = B 

~ Chúc bạn học giỏi ! ~

5 tháng 3 2016

Ta có:

\(\frac{1}{51}>\frac{1}{100}\)

\(\frac{1}{52}>\frac{1}{100}\)

...

\(\frac{1}{99}>\frac{1}{100}\)

\(\frac{1}{100}=\frac{1}{100}\)

=> S = \(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{99}+\frac{1}{100}>\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}+\frac{1}{100}\)

Mà số số hạng của S là: (100 - 51) : 1 + 1 = 50 (số)

=> S \(>\frac{1}{100}.50\)

=> S \(>\frac{1}{2}\)

Vậy S > 1/2.

7 tháng 11 2019

a)\(\frac{x}{17}=\frac{60}{204}=\frac{5}{17}\Rightarrow x=5\)

b)\(\frac{6+x}{33}=\frac{7}{11}\Rightarrow11\left(6+x\right)=7.33\Rightarrow11.6+11x=231\Rightarrow66+11x=231\)

\(\Rightarrow11x=231-66\Rightarrow11x=165\Rightarrow x=\frac{165}{11}=15\)

c)\(\frac{12+x}{43-x}=\frac{2}{3}\Rightarrow2\left(43-x\right)=3\left(12+x\right)\Rightarrow2.43-2x=3.12+3x\)

\(86-2x=36+3x\Rightarrow86-36=3x+2x\Rightarrow50=5x\Rightarrow x=\frac{50}{5}=10\)

1 tháng 8 2016

\(\left(1-\frac{1}{2}\right)\times\left(1-\frac{1}{3}\right)\times\left(1-\frac{1}{4}\right)\times...\times\left(1-\frac{1}{2014}\right)\)

\(=\frac{1}{2}\times\frac{2}{3}\times\frac{3}{4}\times...\times\frac{2013}{2014}\)

\(=\frac{1}{2014}>\frac{1}{2015}\)