Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(1+a+a^2+....+a^{63}\)
\(=\left(1+a\right)+a^2\left(1+a\right)+....+a^{62}\left(1+a\right)\)
\(=\left(1+a\right)\left(1+a^2+a^4+....+a^{62}\right)\)
\(=\left(1+a\right)\left[\left(1+a^2\right)+a^4\left(1+a^2\right)+.....+a^{60}\left(1+a^2\right)\right]\)
\(=\left(1+a\right)\left(1+a^2\right)\left(1+a^4+....+a^{60}\right)\)
.....
\(=\left(1+a\right)\left(1+a^2\right).....\left(1+a^{32}\right)\)
Có \(\left(1+a\right)\left(1+a^2\right)...\left(1+a^{32}\right)=\frac{\left(a-1\right)\left(a+1\right)\left(a^2+1\right)...\left(a^{32}+1\right)}{a-1}\)
\(=\frac{\left(a^2-1\right)\left(a^2+1\right)...\left(a^{32}+1\right)}{a-1}\)
\(...\)
\(=\frac{\left(a^{32}-1\right)\left(a^{32}+1\right)}{a-1}\)
\(=\frac{a^{64}-1}{a-1}\)
\(=\frac{\left(a-1\right)\left(a^{63}+a^{62}+...+a^2+a+1\right)}{a-1}\)
\(=a^{63}+a^{62}+...+a^2+a+1\)
Vậy ...
ta có (a-1)(1+a+a2+......+a63)=a64-1
(a-1)(a+1)(a2+1)....(a32+1)=a64-1
1 \(\left(ab+bc+ca\right)^2=a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=a^2b^2+b^2c^2+c^2a^2\)(Vì a+b+c=0)
b)\(a+b+c=0\Leftrightarrow a^2+b^2+c^2=-2\left(ab+bc+ca\right)\)
\(\Leftrightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=4\left(ab+bc+ca\right)^2\)
Theo câu a) \(\left(ab+bc+ca\right)^2=a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=a^2b^2+b^2c^2+c^2a^2\) nên ta suy ra được điều cần phải chứng minh là \(a^4+b^4+c^4=2\left(ab+bc+ca\right)^2\)
2.
a) \(A=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(\Leftrightarrow A=1\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(A=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
Sử dụng hằng đẳng thức \(\left(a-b\right)\left(a+b\right)=a^2-b^2\)ta được
\(A=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(...\)
\(A=2^{32}-1\left(ĐPCM\right)\)
b) Ta có
\(\left(100^2-101^2\right)+\left(103^2-98^2\right)+\left(105^2-96^2\right)+\left(94^2-107^2\right)\)
=\(201\left(-1+5+9-13\right)=0\)
Suy ra ĐPCM
3
a) Phân tích hết ra rồi chuyển vế làm như bài toán tìm x thông thường
b) Sử dụng bất đẳng thức a^2-b^2= (a-b)(a+b)
c) Sử dụng bất đẳng thức (a-b)(a+b)=a^2-b^2 do ta dễ thấy các biểu thức liên hợp
Không hiểu chỗ nào thì có thể nhắn tin sang để mk giải thích
giả sử \(a_1\left(1-a_2\right);a_2\left(1-a_3\right);...;a_9\left(1-a_1\right)>\frac{1}{4}\)
\(\Rightarrow a_1\left(1-a_2\right).a_2\left(1-a_3\right)...a_9\left(1-a_1\right)>\left(\frac{1}{4}\right)^9\)
mà\(a_1\left(1-a_1\right)=a_1-a^2_1=\frac{1}{4}-\left(\frac{1}{2}-a_1\right)^2\le\frac{1}{4}\)
CMTT \(a_2\left(1-a_2\right);a_3\left(1-a_3\right);...;a_9\left(1-a_9\right)\le\frac{1}{4}\)
=> gt sai=>phải có 1hs bé hơn 1/4
1.
a) ( a+1)(a+2)(a^2+4)(a-1)(a^2+1)(a-2)
= [(a+1)(a-1)][(a-2)(a+2)](a^2+1)(a^2+4)
=[(a^2+1)(a^2-1)][(a^2+4)(a^2-4)]
=(a^4-1)(a^4-16)
b)(3a+1)^2 + (2-3a)(2+3a)
= 9a2 + 6a +1 + 4 - 9a2
= 6a+5
2.
Ta có a3 +b3 = ( a + b)(a2 -ab + b2) = a2 + 2ab +b2 -3ab = (a+b)2 -3ab = 1-3ab ( dpcm)
1.
a) (a + 1)(a + 2)(a2 + 4)(a - 1)(a2 + 1)(a - 2)
= [(a + 1)(a - 1)][(a + 2)(a - 2)](a2 + 4)(a2 + 1)
= (a2 - 1)(a2 - 4)(a2 + 4)(a2 + 1)
= [(a2 - 1)(a2 + 1)][(a2 - 4)(a2 + 4)]
= (a4 - 1)(a4 - 16)
= a8 - 16a4 - a4 + 16
= a8 - 17a4 + 16
b) (3a + 1)2 + (2 - 3a)(2 + 3a)
= 9a2 + 6a + 1 + 22 - 9a2
= (9a2 - 9a2) + 6a + (1 + 4)
= 6a + 5
2.
a + b = 1
(a + b)3 = 13
a3 + 3a2b + 3ab2 + b3 = 1
a3 + b3 + 3ab(a + b) = 1
a3 + b3 = 1 - 3ab(a + b)
Mà a + b = 1
=> a3 + b3 = 1 - 3ab
Vậy với a + b = 1 thì a3 + b3 = 1 - 3ab