Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
còn bài cuối chỉ cần bạn đặt \(n^{1994}+n^{1993}=\left(n+1\right)n^{1993}\)
mà số nguyên tố nếu mình nhớ không nhầm thì thường được biểu diễn dưới dạng là 4k+1 thì phải hay còn dạng nữa mình không nhớ lắm hay là 3k+1 gì đó nữa
lâu nay lười giải quá nhưng thôi mình giải cho bạn.
câu 1: ta gọi 2 số đó là a và b. Ta có:
\(a=x^2+y^2\)
\(b=n^2+m^2\)
=> \(ab=\left(x^2+y^2\right)\left(n^2+m^2\right)\)
bạn nhân nó ra sau đó cộng thêm 2nmxy và trừ 2nmxy rồi áp dụng hằng đẳng thức 1 và 2
2A = (3+1)(3-1)(3^2+1)(3^4+1)...(3^64+1)
2A= (3^2-1)(3^2+1)(3^4+1)...(3^64+1)
Cứ tiếp tục như thế ta dc
2A= 3^128 -1
A = (3^128-1)/2
\(A=\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)
\(\Rightarrow2A=8.\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)
\(=\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)
\(=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)
.....
\(=\left(3^{64}-1\right)\left(3^{64}+1\right)\)
\(=3^{128}-1\)
\(\Rightarrow A=\frac{3^{128}-1}{2}\)
\(x^2+2\left(x+1\right)^2+3\left(x-2\right)^2+4\left(x+3\right)^2\)
\(=x^2+2\left(x^2+2x+1\right)+3\left(x^2-4x+4\right)+4\left(x^2+6x+9\right)\)
\(=x^2+2x^2+4x+2+3x^2-12x+12+4x^2+24x+36\)
\(=10x^2+16x+50\)
Giả sử tìm được 2 số lẻ đó là 2m + 1 và 2n + 1 (m; n là số tự nhiên )
ta có: (2m + 1)2 + (2n +1)2 = 4m2 + 4m + 1 + 4n2 + 4n + 1 = 4.(m2 + n2 + m + n) + 2 = 4k + 2
1 Số chính phương có dạng 4k hoặc 4k + 1 . không có số chính phương nào có dạng 4k + 2 hay 4k + 3
=> (2m + 1)2 + (2n +1)2 không thể là số chình phương
=> ĐPCM