Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(a^5-a=a\left(a^4-1\right)=a\left(a^2-1\right)\left(a^2+1\right)\)
\(=\left(a-1\right)a\left(a+1\right)\left(a^2-4+5\right)\)
\(=\left(a-1\right)a\left(a+1\right)\left(a^2-4\right)+5\left(a-1\right)a\left(a+1\right)\)
\(=\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)+5\left(a-1\right)a\left(a+1\right)⋮5\)
Vì \(\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)⋮5\)( tích 5 số nguyên liên tiếp chia hết cho 5)
và \(5\left(a-1\right)a\left(a+1\right)⋮5\)
=> \(a^5-a⋮5\)
Nếu \(a^5⋮5\)=> a chia hết cho 5
Bạn xem lại đề, tổng của các chữ số hay tích của các chữ số hay hiệu hay gì đó?
Sửa đề cái :V
\(\sqrt[3]{23x^3+15x+8}+\sqrt[5]{3x^5+19x-243}=-x^{2n+1}-x^{2n-1}-x^{2n-3}-...-x-1\)
(Ra đề : Phạm Quang Dương) :)
1. Ta có: a^5 - a = a(a^4 - 1) = a(a² - 1)(a² + 1) = a(a - 1)(a + 1)(a² + 1)
= a(a - 1)(a + 1)(a² - 4 + 5)
= a(a - 1)(a + 1)[ (a² - 4) + 5) ]
= a(a - 1)(a + 1)(a² - 4) + 5a(a - 1)(a + 1)
= a(a - 1)(a + 1)(a - 2)(a + 2) + 5a(a - 1)(a + 1)
= (a - 2)(a - 1)a(a + 1)(a + 2) + 5a(a - 1)(a + 1)
Do (a - 2)(a - 1)a(a + 1)(a + 2) là tích của 5 số nguyên liên tiếp => (a - 2)(a - 1)a(a + 1)(a + 2) chia hết cho 5 mà 5a(a - 1)(a + 1) chia hết cho 5
=> (a - 2)(a - 1)a(a + 1)(a + 2) + 5a(a - 1)(a + 1) chia hết cho 5.
=> a^5 - a chia hết cho 5
Mà a^5 chia hết cho 5 => a chia hết cho 5.
( Nếu a không chia hết cho 5 thì a^5 - a không chia hết cho 5 vì a^5 chia hết cho 5)
Chả ai đồng ý 1 (kí) + 1 (yến) = 2 (tạ).
chắc như vậy là hiểu r nhỉ
uy nhiên, nếu xét theo quan điểm của Toán học hiện đại, việc chứng minh “1 + 1 = 2” là thừa, vì nó không có bất kỳ một ý nghĩa nào nữa, thậm chí, người ta còn có thể chứng minh được rằng “1 + 1” không bằng 2.
Xin trình bày với các bạn một cách thức xây dựng mà ở đây “1 + 1” sẽ không bằng 2 nữa, mà bằng một cái gì đó tùy ý theo đúng quan điểm của Toán.