Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn đổi phân số thành / rồi tìm trên Google có đầy bài này rồi.
a, VT < 1/1.2 + 1/2.3 + 1/3.4 + .... + 1/2007.2008
= 1-1/2+1/2-1/3+1/3-1/4+....+1/2007-1/2008 = 1-1/2008 < 1
=> ĐPCM
Đặt \(S=\frac{1}{2^2}+\frac{1}{3^2}+......+\frac{1}{2003^2}< \frac{1}{1.2}+\frac{1}{2.3}+......+\frac{1}{2002.2003}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+......+\frac{1}{2002}-\frac{1}{2003}\)
\(=1-\frac{1}{2003}< 1\)
Vậy S<1
Ta có: 1/1500 = 1/1500
1/1001 > 1/1500
1/1002 > 1/1500
1/1003 > 1/1500 => 1/1001 + 1/1002 + 1/1003 + ... + 1/1499
. . . . . . . . . . . > 1/1500 + 1/1500 + 1/1500 + ... + 1/1500 (499 số hạng 1/1500)
1/1499 > 1/1500 > 499/1500
=> 1/1001 + 1/1002 + 1/1003 + ... + 1/1500 > 499/1500 + 1/1500 = 500/1500 = 1/3
Vậy 1/1001 + 1/1002 + 1/1003 + ... + 1/1500 > 1/3
k cho mình nha! Cảm ơn!
a)\(\frac{2}{6}+\frac{2}{12}+...+\frac{2}{x\left(x+1\right)}=\frac{2}{2013}\)
\(\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{x\left(x+1\right)}=\frac{2}{2013}\)
\(2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2}{2013}\)
\(\frac{1}{2}-\frac{1}{x+1}=\frac{1}{2013}\)
đề sai
b)\(\frac{x+4}{2000}+1+\frac{x+3}{2001}+1=\frac{x+2}{2002}+1+\frac{x+1}{2003}+1\)
\(\frac{x+2004}{2000}+\frac{x+2004}{2001}=\frac{x+2004}{2002}+\frac{x+2004}{2003}\)
\(\frac{x+2004}{2000}+\frac{x+2004}{2001}-\frac{x+2004}{2002}-\frac{x+2004}{2003}=0\)
\(\left(x+2004\right)\left(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\right)=0\)
\(x+2004=0\).Do \(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\ne0\)
\(x=-2004\)
c)\(\frac{x+5}{205}-1+\frac{x+4}{204}-1+\frac{x+3}{203}-1=\frac{x+166}{366}-1+\frac{x+167}{367}-1+\frac{x+168}{368}-1\)
\(\frac{x-200}{205}+\frac{x-200}{204}+\frac{x-200}{203}=\frac{x-200}{366}+\frac{x-200}{367}+\frac{x-200}{368}\)
\(\frac{x-200}{205}+\frac{x-200}{204}+\frac{x-200}{203}-\frac{x-200}{366}-\frac{x-200}{367}-\frac{x-200}{368}=0\)
\(\left(x-200\right)\left(\frac{1}{205}+\frac{1}{204}+\frac{1}{203}-\frac{1}{366}-\frac{1}{367}-\frac{1}{368}\right)=0\)
\(x-200=0\).Do\(\frac{1}{205}+\frac{1}{204}+\frac{1}{203}-\frac{1}{366}-\frac{1}{367}-\frac{1}{368}\ne0\)
\(x=200\)
d)chịu
Có: \(S\le\frac{1}{\frac{\left(1+1+1+...+1\right)^2}{2001+2002+2003+...+2010}}=\frac{1}{\frac{10^2}{20055}}=\frac{4011}{20}=200,55\)
Do \(\frac{1}{2001}\ne\frac{1}{2002}\ne\frac{1}{2003}\ne...\ne\frac{1}{2010}\) nên dấu "=" không xảy ra \(\Rightarrow\)\(S< 200,55\) (1)
Lại có: \(\frac{1}{2001}+\frac{1}{2002}+\frac{1}{2003}+...+\frac{1}{2010}< \frac{1}{2001}+\frac{1}{2001}+...+\frac{1}{2001}=\frac{10}{2001}\)
\(\Rightarrow\)\(S>\frac{2001}{10}=200,1\) (2)
(1) và (2) suy ra \(200,1< S< 200,55\)\(\Rightarrow\) số nguyên lớn nhất bé hơn S là 200
PS: sai chỗ nào mn chỉ ạ :3
ta chuyển đề bài vế trái thành:
(1+1/2+1/3+1/4+...+1/2001+1/2002) - 2(1/2+1/4+1/6+...+1/2002)
=(1+1/2+1/3+....+1/2002) - (1+1/2+1/3+1/4+...+1/1001)
=1/1002+1/1003+...+1/2002
=> điều phải chứng minh