Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có:
\(0,\left(37\right)=\frac{37}{99}\) ; \(0,\left(62\right)=\frac{62}{99}\)
=> \(0,\left(37\right)+0,\left(62\right)=\frac{37}{99}+\frac{62}{99}=\frac{99}{99}=1\)
b) Ta có:
\(0,\left(33\right)=\frac{33}{99}\)
=> \(0,\left(33\right).3=\frac{33}{99}.3=\frac{1}{3}.3=1\)
\(A=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{99}}\)
\(\Rightarrow\dfrac{A}{3}=\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{100}}\)
\(\Rightarrow A-\dfrac{A}{3}=\dfrac{2A}{3}=\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{99}}\right)-\left(\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{100}}\right)\)
\(\Rightarrow\dfrac{2A}{3}=\left(\dfrac{1}{3^2}-\dfrac{1}{3^2}\right)+\left(\dfrac{1}{3^3}-\dfrac{1}{3^3}\right)+...+\left(\dfrac{1}{3^{99}}-\dfrac{1}{3^{99}}\right)+\left(\dfrac{1}{3}-\dfrac{1}{3^{100}}\right)=\dfrac{1}{3}-\dfrac{1}{3^{100}}\)
\(\Rightarrow2A=3\cdot\left(\dfrac{1}{3}-\dfrac{1}{3^{100}}\right)\)
\(\Rightarrow\text{A}=\dfrac{1-\dfrac{1}{3^{99}}}{2}\)
\(\Rightarrow A=\dfrac{1}{2}-\dfrac{1}{2.3^{99}}< \dfrac{1}{2}\)
\(0,\left(37\right)+0,\left(62\right)=0,\left(99\right)\)
Theo quy ước làm tròn số ta dược :
\(0,\left(99\right)\approx1\) (đpcm)
b) Làm tương tự câu a) ta có :
\(0,\left(33\right).3=0,\left(99\right)\approx1\) (đpcm)
\(0,\left(37\right)+0,\left(62\right)=\frac{37}{99}+\frac{62}{99}=\frac{99}{99}=1\)
\(0,\left(33\right).3=\frac{33}{99}.3=\frac{1}{3}.3=\frac{3}{3}=1\)
a, 0,(37)+0,(62)=0,(99)
Theo quy ước làm tròn số ta dược :
0,\left(99\right)\approx10,(99)≈1 (đpcm)
b) Làm tương tự câu a) ta có :
0,\left(33\right).3=0,\left(99\right)\approx10,(33).3=0,(99)≈1 (đpcm)
a) Ta có:
0,\left(37\right)=\frac{37}{99}0,(37)=9937 ; 0,\left(62\right)=\frac{62}{99}0,(62)=9962
=> 0,\left(37\right)+0,\left(62\right)=\frac{37}{99}+\frac{62}{99}=\frac{99}{99}=10,(37)+0,(62)=9937+9962=9999=1
b) Ta có:
0,\left(33\right)=\frac{33}{99}0,(33)=9933
=> 0,\left(33\right).3=\frac{33}{99}.3=\frac{1}{3}.3=10,(33).3=9933.3=31.3=1
a) 0,(37)+0,(62) = 1
Có 0.(37)=\(\frac{37}{99}\)và 0.(62) = \(\frac{62}{99}\)
\(\frac{37}{99}\)+ \(\frac{62}{99}\)= 1
\(\Rightarrow0,\left(37\right)+0.\left(62\right)=1\)
b)\(0,\left(37\right)\times3=1\)
Có: \(0,\left(37\right)=\frac{37}{99}\)
\(\frac{37}{99}\times3=1\)
\(\Rightarrow0\left(37\right)\times3=1\)
Viết đề sao tui không hiểu :)
bấm máy tính ta có 0(33)-5,1(3)=-4,8
=> tính đc rùi