Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
VT sẽ được phân tích thành
\(\left(y-x\right)\left(y+x\right)\left(2y-x\right)\left(2y+x\right)\left(3y+x\right)=33\)
Nếu x,y là các số nguyên =>VT là tích của 5 số nguyên, mà 33 chỉ là tích của nhiều nhất là 4 số nguyên => vô lí=> PT k có nghiệm nguyên
^_^
\(x^2-y^2+2x-4y-10=0\)
\(\Leftrightarrow x^2+2x+1-\left(y^2+y+9\right)=0\)
\(\Leftrightarrow\left(x+1\right)^2-\left(y+2\right)^2-5=0\)
\(\Leftrightarrow\left(x+1\right)^2-\left(y+1\right)^2=5\)
\(\Leftrightarrow\left(x+1+y+2\right)\left(x+1+y-2\right)=5\)
\(\Leftrightarrow\left(x+y+1+2\right)\left(x-y-2-1\right)=5\)
\(\Leftrightarrow\left(x+y+3\right)\left(x-y-1\right)=5\)
Ta có bảng GT:
x+y+3 | 1 | 5 | -1 | -5 |
x-y-1 | 5 | 1 | -5 | -1 |
x | 2 | 2 | -4 | -4 |
y | -4 | 0 | 0 | -4 |
Vậy (x,y)= (2;4) (2;0) (4;0);(-4;4)
x,y nguyên dương là:
=> Nghiệm của nguyên dương PT là: (x,y)=(2,0)
ta có:
2x^2-4y=10
<=>2x^2-4y+2=12
<=>2(x^2-2y+1)=12
<=>(x-y)^2=6
<=>x-y=căn 6
vì căn 6 là số vô tỉ nên x-y là 1 số vô tỉ (1).
giả sử x,y là 2 nghiệm nguyên thì x-y nguyên trái với (1). Vậy pt ko có nghiệm nguyên.
Phương trình trên không phải không có nghiệm mà có rất nhiều nghiệm
Ta có 2x^2-4y=10 <=>2(x^2-2y)=10
<=>x^2-2y=5
Ta thấy 2y là số chẵn mà 5 là số lẻ =>x^2 là số lẻ từ đó ta cứ cho x là số lẻ sau đó suy ra giá trị của y
Ví dụ với x=3 =>x^2=9=>y=2
x=5=>x^2=25=>y=10
Cứ như thế ta sẽ tìm được tất cả các cặp số
\(\left(\sqrt{2}x\right)-2.\sqrt{2}x.\sqrt{2}+\left(\sqrt{2}\right)^2-12=0\)
<=> \(\left(\sqrt{2}x-\sqrt{2}\right)^2=12\)
<=> \(\sqrt{2}x-\sqrt{2}=12\)=> x ko có nghiệm nguyên
Hoặc \(\sqrt{2}x-\sqrt{2}=-12\) => x ko có nghiệm nguyên
( cho mình ^^)
\(\text{Ta có:}2010.2011⋮2;2xy⋮2\Rightarrow x^2⋮2\Rightarrow x⋮2\Rightarrow x^2⋮4;2xy⋮4\text{ mà:}\)
\(\text{2010.2011 chia hết cho 2 nhưng không chia hết cho 4 nên: }x^2+2010.2011\text{ không chia hết cho 4}̸\)
\(\text{mà: }2xy⋮4\left(\text{cmt}\right)\text{ nên phương trình không có nghiệm nguyên}\)
Ta có: \(x^2-2xy+y^2-y^2+2010.2011=0\)
<=> \(\left(x-y\right)^2+2010.2011=y^2\)
số chính phương chia 4 dư 1 hoặc 0
=> VP chia 4 dư 1 hoặc 0 (1)
Ta có: (x-y)^2 chia 4 dư 1 hoặc 0 mà 2010.2011 chia 4 dư 2
=> VT chia 4 dư 3 hoặc 2 (2)
Từ (1) ; (2) => không tồn tại x; y nguyên.