Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(d=\left(21n+4,14n+3\right)\)
Suy ra
\(\hept{\begin{cases}21n+4⋮d\\14n+3⋮d\end{cases}}\Rightarrow3\left(14n+3\right)-2\left(21n+4\right)=1⋮d\Rightarrow d=1\).
Do đó ta có đpcm.
) Để 21n+4/14n+3 là phân số tổi giản thì ƯCLN(21n+4; 14n+3) =1
Gọi ƯCLN(21n+4; 14n+3) =d => 21n+4 ⋮⋮d; 14n+3 ⋮⋮d
=> (14n+3) -(21n+4) ⋮⋮d
=> 3(14n+3) -2(21n+4) ⋮⋮d
=> 42n+9 - 42n -8 ⋮⋮d
=> 1⋮⋮d
=> 21n+4/14n+3 là phân số tối giản
-Gọi \(ƯCLN\left(14n+3;21n+4\right)=a\).
-Có: \(\left(14n+3\right)⋮a\)
\(\Rightarrow\left[3.\left(14n+3\right)\right]⋮a\)
\(\Rightarrow\left(42n+9\right)⋮a\) (1)
-Có: \(\left(21n+4\right)⋮a\)
\(\Rightarrow\left[2\left(21n+4\right)\right]⋮a\)
\(\Rightarrow\left(48n+8\right)⋮a\) (2)
-Từ (1) và (2) suy ra:
\(\left[\left(48n+9\right)-\left(48n+8\right)\right]⋮a\)
\(\Rightarrow1⋮a\)
\(\Rightarrow a\in\left\{1;-1\right\}\)
-Vậy \(\dfrac{14n+3}{21n+4}\) là phân số tối giản.
a,Gọi d=(14n+3;21n+5)
=>14n+3 (2) và 21n+5 chia hết cho d
=>70n+15 và 63n+15 chi hết cho d => 7n chia hết cho d => 14n chia hết cho d (1)
Từ (1) và (2) => 3 chia hết cho d => d= 3 hoặc 1
+, Nếu d=3 => 21n+5 chia hết cho 3 => 5 chia hết cho 3 (vô lý) => d=1 =>đpcm
b, Gọi d=(16n+5;24n+7)
=> 16n+5 (4) và 24n+7 chia hết cho d
=>8n+2 chia hết cho d =>16n+4 chia hết cho d (3)
Từ (3) và (4) => d=1
gọi d là ƯCLN của 21n+4 và 14n+3
=> 21n+4 chia hết cho d =>2.(21n+4) chia hết cho d
14n+3 chia hết cho d =>3.(14n+3) chia hết cho d
=> (42n+9)-(42n+8) chia hết cho d
=> 42n+9-42n-8 chia hết cho d
=>1 chia hết cho d
=> d thuộc Ư(1)={1}
=> ƯCLN(21n+4;14n+3)=1 => phân số 21n+4/14n+3 là phân số tối giản (ĐPCM)
giải
gọi d ưcln {21n+4 và 14 n+3} =>
(21n+4) chia hết cho d=> [2.(21n+4)] chia hết cho d =>(42n+8)chia hết cho d(1)
(14n+3)chia hết cho d=> [3.(14n+3)] chia hết cho d => (42n+9)chia hết cho d(2)
từ 1 và 2 => [(42n+9)-(42n+8)] chia hết cho d => (42n+9-42n-8)chia hết cho d => [(42n_42n) +(9-8)] chia hết cho d => 1 chia hết cho d => d =1 mà d lại là ưcln {21n+4 và 14n+3)(n thuộc N)
vậy biểu thức đã được chứng minh