Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: m^3-m = m(m^2-1^2) = m.(m+1)(m-1) là tích của 3 số nguyên liên tiếp
=> m(m+1)(m-1) chia hết cho 3 và 2
Mà (3,2) = 1
=> m(m+1)(m-1) chia hết cho 6
=> m^3 - m chia hết cho 6 V m thuộc Z
b) Ta có: (2n-1)-2n+1 = 2n-1-2n+1 = 0-1+1 = 0 luôn chia hết cho 8
=> (2n-1)-2n+1 luôn chia hết cho 8 V n thuộc Z
Tick nha pham thuy trang
a, m3 - m = m( m2 - 12) = m(m - 1 ) ( m + 1) => 3 số nguyên liên tiếp : hết cho 6
mk chỉ biết có thế thôi
a) Giả sử \(S_n=1^2+2^2+3^2+...+n^2=\dfrac{n\left(n+1\right)\left(2n+1\right)}{6}\left(\forall n\inℕ^∗\right)\)
- Với \(n=1:\)
\(S_n=\dfrac{1.\left(1+1\right)\left(2.1+1\right)}{6}=\dfrac{2.3}{6}=1\left(luôn.đúng\right)\)
- Với \(n=k:\)
\(S_k=1^2+2^2+3^2+...+k^2=\dfrac{k\left(k+1\right)\left(2k+1\right)}{6}\left(\forall k\inℕ^∗\right)\left(luôn.đúng\right)\)
- Với \(n=k+1:\)
\(S_{k+1}=1^2+2^2+3^2+...+k^2+\left(k+1\right)^2\)
\(\Rightarrow S_{k+1}=\dfrac{k\left(k+1\right)\left(2k+1\right)}{6}+\left(k+1\right)^2\)
\(\Rightarrow S_{k+1}=\dfrac{k\left(k+1\right)\left(2k+1\right)+6\left(k+1\right)^2}{6}\)
\(\Rightarrow S_{k+1}=\dfrac{\left(k+1\right)\left[k\left(2k+1\right)+6\left(k+1\right)\right]}{6}\)
\(\Rightarrow S_{k+1}=\dfrac{\left(k+1\right)\left[2k^2+7k+6\right]}{6}\)
\(\Rightarrow S_{k+1}=\dfrac{\left(k+1\right)\left[2k^2+3k+4k+6\right]}{6}\)
\(\Rightarrow S_{k+1}=\dfrac{\left(k+1\right)\left[2k\left(k+\dfrac{3}{2}\right)+4\left(k+\dfrac{3}{2}\right)\right]}{6}\)
\(\Rightarrow S_{k+1}=\dfrac{\left(k+1\right)\left[\left(2k+4\right)\left(k+\dfrac{3}{2}\right)\right]}{6}\)
\(\Rightarrow S_{k+1}=\dfrac{\left(k+1\right)\left[\left(k+2\right)\left(2k+3\right)\right]}{6}\) (Đúng với \(n=k+1\))
Vậy \(S_n=1^2+2^2+3^2+...+n^2=\dfrac{n\left(n+1\right)\left(2n+1\right)}{6}\left(\forall n\inℕ^∗\right)\left(dpcm\right)\)
+) Giả sử n là số chẵn
Nếu n là số chẵn thì n chia hết cho 2
=> n(n+)(2n+1) chia hết cho 2
+) Giả sử n là số lẻ
Nếu n là số lẻ thì n+1 là số chẵn và chia hết cho 2
=> n(n+1)(2n+1) chia hết cho 2
<=> n(n+1)(2n+1) chia hết cho 2 với mọi n thuộc Z (1)
Vì n thuộc Z nên n có dạng 3k;3k+1 và 3k+2
(+) Với n=3k
=> n chia hết cho 3 => n(n+1)(2n+1) chia hết cho 3
(+) Với n=3k+1
=> 2n+1 = 2.(3k+1)+1 = 6k+2+1 = 6k+3 chia hết cho 3
=> n(n+1)(2n+1) chia hết cho 3
(+) Với n=3k+2
=> n+1 = 3k+2+1 = 3k+3 chia hết cho 3
=> n(n+1)(2n+1) chia hết cho 3
<=> n(n+1)(2n+1) chia hết cho 3 với mọi n thuộc Z (2)
Từ (1) và (2) => n(n+1)(2n+1) chia hết cho 2.3 ( vì 2 và 3 là hai số nguyên tố cùng nhau )
=> n(n+1)(2n+1) chia hết cho 6
=> ĐPCM
__HT__ Merry Christmas__
vì số chia hết cho 2; 3 thì chia hết cho 6. ta có:
th1: n=2k => n chia hết cho 2 nên n(n+1) (2n+1) chia hết cho 2
th2: n=2k+1 => n+1= 2k+1+1= 2k+2chia hết cho 2 nên n(n+1) (2n+1) chia hết cho 2
Vậy với mọi trường hợp n chia hết cho 2
th1: n=3k => n chia hết cho 3 => n(n+1) (2n+1) chia hết cho 3
th2: n=3k+1 => 2n+1= 2(3k+1)+ 1=2*3k+2 +1=6k+3 chia hết cho 3 => n(n+1) (2n+1) chia hết cho 3
th3: n=3k+2 => n+1= 3k+2+1= 3k+3 chia hết cho 3 nên n(n+1) (n+2) chia hết cho 3
Vậy với mọi trường hợp n(n+1) (2n+1) chia hết cho 3
=> n(n+1) (2n+1) chia hết cho 2 và 3 => n(n+1) (n+2) chia hết cho 6
n(n+1)(2n+1) = n(n+1)(n+2+n-1)=n(n+1)(n+2)+(n-1)(n+1)n
ba số liên tiếp thì chia hết cho 2 ; chia hết cho 3 --> tổng trên chia hết cho 6
n(n+1)(2n+1) = n(n+1)(n+2+n-1)=n(n+1)(n+2)+(n-1)(n+1)n
ba số liên tiếp thì chia hết cho 2 ; chia hết cho 3 --> tổng trên chia hết cho 6
Lời giải:
a. Gọi $d$ là ƯCLN $(n+3, 2n+7)$
$\Rightarrow n+3\vdots d$ và $2n+7\vdots d$
$\Rightarrow 2n+7-2(n+3)\vdots d$
Hay $1\vdots d$
$\Rightarrow d=1$
Vậy $n+3, 2n+7$ nguyên tố cùng nhau, nên $\frac{n+3}{2n+7}$ tối giản.
b.
Gọi $d$ là ƯCLN $(4n+6, 6n+7)$
$\Rightarrow 4n+6\vdots d; 6n+7\vdots d$
$\Rightarrow 3(4n+6)-2(6n+7)\vdots d$
$\Rightarrow 4\vdots d$
Mặt khác, vì $6n+7\vdots d$ mà $6n+7$ lẻ nên $d$ lẻ.
$\Rightarrow d=1$
$\Rightarrow \frac{4n+6}{6n+7}$ tối giản.
`n(n+1)(2n+1) = n(n+1)(n+2+n-1) = n(n+1)(n+2) + (n-1)n(n+1) `
Ta có:
`n(n+1)(n+2)` là các số liên tiếp `=> {(n(n+1)(n+2) vdots 2),(n(n+1)(n+2) vdots 3):}`
`=> n(n+1)(n+2) vdots 6`
`(n-1)n(n+1)` là các số liên tiếp `=> {((n-1)n(n+1) vdots 2),((n-1)n(n+1) vdots 3):}`
`=> (n-1)n(n+1) vdots 6`
`=> n(n+1)(n+2) + (n-1)n(n+1) vdots 6`
`=> n(n+1)(2n+1) vdots 6 (đpcm)`
\(n\left(n+1\right)\left(2n+1\right)\)
\(=n\left(n+1\right)\left(n+2+n-1\right)\)
\(=n\left(n+1\right)\left(n+2\right)+\left(n-1\right)\cdot n\cdot\left(n+1\right)\)
Vì n;n+1;n+2 là ba số nguyên liên tiếp
nên \(n\left(n+1\right)\left(n+2\right)⋮3!=6\)
Vì n-1;n;n+1 là ba số nguyên liên tiếp
nên \(\left(n-1\right)\cdot n\cdot\left(n+1\right)⋮3!=6\)
Do đó: \(n\left(n+1\right)\left(n+2\right)+\left(n-1\right)\cdot n\cdot\left(n+1\right)⋮6\)
=>\(n\left(n+1\right)\left(2n+1\right)⋮6\)