Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm :
- Cách 1 :
Ta có :
\(\frac{2a+13b}{3a-7b}=\frac{2c+13d}{3a-7d}\)
\(\Rightarrow\frac{2a+13b}{2c+13d}=\frac{3a-7b}{3c-7d}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ; ta có :
\(\frac{2a+13b}{2c+13d}=\frac{3a-7b}{3c-7d}=\frac{2a+13b+3a-7b}{2c+13d+3c-7d}=\frac{5a+6b}{5c+6d}\Rightarrow\frac{5a}{5c}=\frac{6b}{6d}\)
\(\Rightarrow\frac{a}{b}=\frac{c}{d}\)
=> Điều phải chứng minh
- Cách 2 :
\(\text{Giả sử : }\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)
Ta có :
- \(\frac{2a+13b}{3a-7b}=\frac{2bk+13b}{3bk-7b}=\frac{b\left(2k+13\right)}{b\left(3k-7\right)}=\frac{2k+13}{3k-7}\left(1\right)\)
- \(\frac{2c+13d}{3c-7d}=\frac{2dk+13d}{3dk-7d}=\frac{d\left(2k+13\right)}{d\left(3k-7\right)}=\frac{2k+13}{3k-7}\left(2\right)\)
Từ (1) và (2)
\(\Rightarrow\frac{2a+13b}{3a-7b}=\frac{2c+13d}{3c-7d}\)
=> Điều phải chứng minh
Bài 1:
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk; c=dk\)
Khi đó: \(\left\{\begin{matrix} \frac{2a+5b}{3a-4b}=\frac{2bk+5b}{3bk-4b}=\frac{b(2k+5)}{b(3k-4)}=\frac{2k+5}{3k-4}\\ \frac{2c+5d}{3c-4d}=\frac{2dk+5d}{3dk-4d}=\frac{d(2k+5)}{d(3k-4)}=\frac{2k+5}{3k-4}\end{matrix}\right.\)
\(\Rightarrow \frac{2a+5b}{3a-4b}=\frac{2c+5d}{3c-4d}\)
Ta có đpcm.
Bài 2:
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk; c=dk\)
Khi đó: \(\frac{ab}{cd}=\frac{bk.b}{dk.d}=\frac{b^2}{d^2}\)
\(\frac{a^2+b^2}{c^2+d^2}=\frac{(bk)^2+b^2}{(dk)^2+d^2}=\frac{b^2(k^2+1)}{d^2(k^2+1)}=\frac{b^2}{d^2}\)
Do đó: \(\frac{ab}{cd}=\frac{a^2+b^2}{c^2+d^2}(=\frac{b^2}{d^2})\) . Ta có đpcm.
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)
\(\Rightarrow a=b=c\)mà a + b + c = 2019
\(\Rightarrow a=b=c=\frac{2019}{3}=673\)
Ta có: \(\frac{2a+13b}{3a-7c}=\frac{2c+13d}{3a-7d}\)
\(\Rightarrow\frac{2a+13b}{2c+13d}=\frac{3a-7b}{3c-7d}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{2a+13b}{2c+13d}=\frac{3a-7b}{3c-7d}=\frac{2a+13b+3a-7b}{2c+13d+3c-7d}=\frac{5a+6b}{5c+6d}\)
\(\Rightarrow\frac{5a+6b}{5c+6d}\Rightarrow\frac{5a}{5c}=\frac{6b}{6d}\)
\(\Rightarrow\frac{a}{c}=\frac{b}{d}\left(đpcm\right)\)