Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với \(a>0,b>0,a\ne b\)
\(\frac{a-\sqrt{ab}+b}{a\sqrt{a}+b\sqrt{b}}-\frac{\sqrt{a}-\sqrt{b}-1}{a-b}\)
\(=\)\(\frac{a-\sqrt{ab}+b}{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}-\frac{\sqrt{a}-\sqrt{b}}{a-b}+\frac{1}{a-b}\)
\(=\frac{1}{\sqrt{a}+\sqrt{b}}-\frac{1}{\sqrt{a}+\sqrt{b}}+\frac{1}{a-b}=\frac{1}{a-b}\)
Ta cần chứng minh \((1+a)(1+b)(1+c) \geq (1+\sqrt[3]{abc})^3\)
\(\Leftrightarrow 1+abc+ab+bc+ca+a+b+c \geq 1+3\sqrt[3]{(abc)^2}+3\sqrt[3]{abc}+abc\)
\(\Leftrightarrow ab+bc+ca+a+b+c \geq 3\sqrt[3]{(abc)^2}+3\sqrt[3]{abc}\)
Đúng theo BĐT AM-GM. Áp dụng vào ta có:
\(\left(1+\frac{1}{a} \right)\left(1+\frac{1}{b} \right)\left(1+\frac{1}{c} \right)=\dfrac{(1+a)(1+b)(1+c)}{abc} \geq \dfrac{(1+\sqrt[3]{abc})^3}{abc} \geq 64\)
Từ \(a+b+c=1 \Rightarrow abc\le \frac{1}{27}\) \(\Rightarrow \dfrac{(1+\sqrt[3]{abc})^3}{abc}=\bigg(\dfrac{1}{\sqrt[3]{abc}}+1\bigg)^3 \geq 64\)
Đẳng thức xảy ra khi \(a=b=c=\frac{1}{3}\)
Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :
\(\frac{1}{ab}+\frac{1}{ac}\ge\frac{\left(1+1\right)^2}{ab+ac}=\frac{4}{a\left(b+c\right)}\)(1)
Áp dụng bất đẳng thức AM-GM ta có :
\(a\left(b+c\right)\le\frac{\left(a+b+c\right)^2}{4}=4\Rightarrow\frac{4}{a\left(b+c\right)}\ge1\)(2)
Từ (1) và (2) \(\Rightarrow\frac{1}{ab}+\frac{1}{ac}\ge\frac{4}{a\left(b+c\right)}\ge1\Rightarrow\frac{1}{ab}+\frac{1}{ac}\ge1\left(đpcm\right)\)
Đẳng thức xảy ra <=> a = 2 ; b = c = 1
\(\dfrac{a}{b+c}+1+\dfrac{b}{c+a}+1=\left(a+b+c\right)\left(\dfrac{1}{b+c}+\dfrac{1}{a+c}\right)\)
Áp dụng BĐT AM-GM:\(\dfrac{1}{b+c}+\dfrac{1}{a+c}\ge\dfrac{4}{a+b+2c}\)
\(\dfrac{a}{b+c}+\dfrac{b}{c+a}\ge\dfrac{4\left(a+b+c\right)}{a+b+2c}-2\)(*)
Lại có: theo AM-GM:\(\sqrt{\dfrac{a+b}{2c}.1}\le\dfrac{1}{2}.\dfrac{a+b+2c}{2c}=\dfrac{a+b+2c}{4c}\)
\(\Rightarrow\sqrt{\dfrac{2c}{a+b}}\ge\dfrac{4c}{a+b+2c}\)(**)
từ (*) và (**),ta có:
\(VT\ge\dfrac{4\left(a+b+c\right)+4c}{a+b+2c}-2=\dfrac{4\left(a+b+2c\right)}{a+b+2c}-2=2\)(ĐpcM)
Dấu = xảy ra khi a=b=c>0
Giải:
Áp dụng BĐT Cauchy-Schwarz:
\(\frac{1}{p-a}+\frac{1}{p-b}\geq \frac{4}{2p-a-b}=\frac{4}{c}\)
\(\frac{1}{p-b}+\frac{1}{p-c}\geq \frac{4}{2p-b-c}=\frac{4}{a}\)
\(\frac{1}{p-b}+\frac{1}{p-c}\geq \frac{4}{2p-b-c}=\frac{4}{a}\)
Cộng theo vế và thu gọn ta được \(\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}\geq 2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Ta có đpcm
Dấu bằng xảy ra khi $a=b=c$
Lời giải:
Vì $ab+bc+ac=1$ nên:
$a^2+1=a^2+ab+bc+ac=(a+b)(b+c)$
$b^2+1=b^2+ab+bc+ac=(b+a)(b+c)$
$c^2+1=c^2+ab+bc+ac=(c+a)(c+b)$
Do đó, áp dụng BĐT AM-GM:
\(\frac{a}{\sqrt{1+a^2}}+\frac{b}{\sqrt{1+b^2}}+\frac{c}{\sqrt{1+c^2}}=\frac{a}{\sqrt{(a+b)(a+c)}}+\frac{b}{\sqrt{(b+c)(b+a)}}+\frac{c}{\sqrt{(c+a)(c+b)}}\)
\(\leq \frac{1}{2}\left(\frac{a}{a+b}+\frac{a}{a+c}\right)+\frac{1}{2}\left(\frac{b}{b+a}+\frac{b}{b+c}\right)+\frac{1}{2}\left(\frac{c}{c+a}+\frac{c}{c+b}\right)=\frac{1}{2}\left(\frac{b+a}{b+a}+\frac{c+b}{c+b}+\frac{a+c}{c+a}\right)=\frac{3}{2}\)
Ta có đpcm
Dấu "=" xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)
Lời giải:
Vì $ab+bc+ac=1$ nên:
$a^2+1=a^2+ab+bc+ac=(a+b)(b+c)$
$b^2+1=b^2+ab+bc+ac=(b+a)(b+c)$
$c^2+1=c^2+ab+bc+ac=(c+a)(c+b)$
Do đó, áp dụng BĐT AM-GM:
\(\frac{a}{\sqrt{1+a^2}}+\frac{b}{\sqrt{1+b^2}}+\frac{c}{\sqrt{1+c^2}}=\frac{a}{\sqrt{(a+b)(a+c)}}+\frac{b}{\sqrt{(b+c)(b+a)}}+\frac{c}{\sqrt{(c+a)(c+b)}}\)
\(\leq \frac{1}{2}\left(\frac{a}{a+b}+\frac{a}{a+c}\right)+\frac{1}{2}\left(\frac{b}{b+a}+\frac{b}{b+c}\right)+\frac{1}{2}\left(\frac{c}{c+a}+\frac{c}{c+b}\right)=\frac{1}{2}\left(\frac{b+a}{b+a}+\frac{c+b}{c+b}+\frac{a+c}{c+a}\right)=\frac{3}{2}\)
Ta có đpcm
Dấu "=" xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)
Vì a,b,c dương nên hiển nhiên:
\(a+b< a+b+c\Leftrightarrow\frac{1}{a+b}>\frac{1}{a+b+c}\)
Tương tự: \(\frac{1}{b+c}>\frac{1}{a+b+c}\) và \(\frac{1}{c+a}>\frac{1}{a+b+c}\)
Cộng vế lại ta được: \(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}>\frac{3}{a+b+c}\)