K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
23 tháng 5

Lời giải:

$(a^2+b^2)(x^2+y^2)=(ax+by)^2$
$\Leftrightarrow a^2x^2+a^2y^2+b^2x^2+b^2y^2=a^2x^2+b^2y^2+2axby$

$\Leftrightarrow a^2y^2+b^2x^2-2axby=0$

$\Leftrightarrow (ay-bx)^2=0$

$\Leftrightarrow ay=bx$

$\Leftrightarrow \frac{a}{x}=\frac{b}{y}$ (điều kiện: $x,y\neq 0$)

 

23 tháng 5

cho em lời giải chi tiết với ạ, em cảm ơn

26 tháng 2 2018

Phương Ann Nhã Doanh đề bài khó wá Mashiro Shiina Đinh Đức Hùng

Nguyễn Huy Tú Lightning Farron Akai Haruma

AH
Akai Haruma
Giáo viên
9 tháng 11 2021

Lời giải:

Đặt $\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=t$

$\Rightarrow x=at; y=bt; z=ct$. Ta có:

$(x+y+z)^2=(at+bt+ct)^2=t^2(a+b+c)^2=t^2(*)$

Mặt khác:

$x^2+y^2+z^2=(at)^2+(bt)^2+(ct)^2=t^2(a^2+b^2+c^2)=t^2(**)$

Từ $(*); (**)\Rightarrow (x+y+z)^2=x^2+y^2+z^2$ (đpcm)

9 tháng 11 2021

em cảm ơn cô/thầy nhiều

Đặt x/a=y/b=z/c=k

=>x=ak; y=bk; z=ck

\(\dfrac{x^2+y^2+z^2}{\left(ax+by+cz\right)^2}=\dfrac{a^2k^2+b^2k^2+c^2k^2}{a^4k^2+b^4k^2+c^4k^2}=\dfrac{1}{a^2+b^2+c^2}\)

 

\(A=\left(2\cdot\dfrac{8}{11}-1\cdot\dfrac{-5}{11}\right)^2=\left(\dfrac{16}{11}+\dfrac{5}{11}\right)^2=\left(\dfrac{21}{11}\right)^2=\dfrac{441}{121}\)

\(B=\left(4+1\right)\left(\dfrac{64}{121}+\dfrac{25}{121}\right)=5\cdot\dfrac{89}{121}\)

mà \(441< 5\cdot89\)

nên A<B

15 tháng 10 2017

Ta có:

\(b^2=ac\Rightarrow\dfrac{a}{b}=\dfrac{b}{c}\left(1\right)\)

\(c^2=bd\Rightarrow\dfrac{b}{c}=\dfrac{c}{d}\left(2\right)\)

Từ (1) và (2), suy ra: \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a+b+c}{b+c+d}\)

\(\Rightarrow\left(\dfrac{a+b+c}{b+c+d}\right)^3=\dfrac{a}{b}.\dfrac{b}{c}.\dfrac{c}{d}=\dfrac{a}{d}\)

Vậy \(\dfrac{a}{d}=\left(\dfrac{a+b+c}{b+c+d}\right)^3\)(đpcm)

~ Học tốt!~

26 tháng 5 2022

\(A=\dfrac{\left(a+b\right)\left(-x-y\right)-\left(a-y\right)\left(b-x\right)}{abxy\left(xy+ay+ab+by\right)}\)

\(=\dfrac{a\left(-x-y\right)+b\left(-x-y\right)-a\left(b-x\right)+y\left(b-x\right)}{abxy\left(xy+ay+ab+by\right)}\)

\(=\dfrac{-ax-ay-bx-by-ab+ax+by-xy}{abxy\left(xy+ay+ab+by\right)}\)

\(=\dfrac{-ay-bx-ab-xy}{abxy\left(xy+ay+ab+by\right)}\)

\(=\dfrac{-xy+ay+ab+by}{abxy\left(xy+ay+ab+by\right)}=\dfrac{-1}{abxy}\)

Với \(a=\dfrac{1}{3};b=-2;x=\dfrac{3}{2};y=1\)

\(\Rightarrow A=\dfrac{-1}{\dfrac{1}{3}.\left(-2\right).\dfrac{3}{2}.1}=-1\)