\(\dfrac{bz+cy}{x\left(-ax+by+cz\right)}=\dfrac{cx+az}{y\left(ax-by+cz\right)}=\dfrac{ay+bx}...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 11 2017

Bài 2:

\(2^{91}\) \(5^{35}\)

Ta có:

\(2^{91}=\left(2^{13}\right)^7\) \(=8192^7\)

\(5^{35}=\left(5^5\right)^7\) =\(3125^7\)

Vì 8192\(^7\) >3125\(^7\) nên \(2^{91}>5^{35}\)

Bài 3:

\(\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}=\dfrac{ab}{cd}\)

VT=\(\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}\)

\(=\dfrac{a^2-2ab+b^2}{c^2-2cd+d^2}\)

Mới biết làm đến đó thôi à!

22 tháng 11 2017

2)

\(2^{91}=2^{13.7}=\left(2^{13}\right)^7=8192^7\)

\(5^{35}=5^{5.7}=\left(5^5\right)^7=3125^7\)

\(8192>3125\)

Nên \(8192^7>3125^7\)

Vậy \(2^{91}>2^{35}\)

18 tháng 10 2017

bz-cy/a = cx- az /b = ay-bx /c => bxz-cxy / ax = cxy-azy / b = azy-bxz/c = bxz-cxy + cxy-azy+azy-bxz / a+b+c = 0/ a+b+c = 0

Suy ra : bz -cy/a = 0 => bz-cy=0 => bz = cy => z/c = b/y

cx-az/b = 0 => cx-az=0 => cx=az => x/a = z/c

ay-bx/c = 0 => ay-bx = 0 => ay=bx=> y/b = x/a

Vậy x/a=y/b=c/z

23 tháng 7 2017

giúp nha người bạn Toshiro Kiyoshi

24 tháng 7 2017

1. Ta có:

a) \(\left(x-2y\right)\left(3xy-2y+3x\right)\)

\(=x\left(3xy-2y+3x\right)-2y\left(3xy-2y+3x\right)\)

\(=3x^2y-2xy+3x^2-6xy^2+4y^2-6xy\)

\(=3x^2y-6xy^2+3x^2-8xy+4y^2\)

b) \(\left(x-1\right)\left(x-2\right)\left(x-3\right)=\left(x-1\right)\left[\left(x-2\right)\left(x-3\right)\right]\)

\(=\left(x-1\right)\left[x\left(x-3\right)-2\left(x-3\right)\right]\)

\(=\left(x-1\right)\left(x^2-3x-2x+6\right)\)

\(=\left(x-1\right)\left(x^2-5x+6\right)\)

\(=x\left(x^2-5x+6\right)-1\left(x^2-5x+6\right)\)

\(=x^3-5x^2+6x-x^2+5x-6\)

\(=x^3-6x^2+11x-6\)

Đặt x/a=y/b=z/c=k

=>x=ak; y=bk; z=ck

\(\dfrac{x^2+y^2+z^2}{\left(ax+by+cz\right)^2}=\dfrac{a^2k^2+b^2k^2+c^2k^2}{a^4k^2+b^4k^2+c^4k^2}=\dfrac{1}{a^2+b^2+c^2}\)

 

3 tháng 8 2017

Từ \(a\left(y+z\right)=b\left(z+x\right)\), áp dụng t/c dãy tỉ số bằng nhau ta được

\(\dfrac{z+x}{a}=\dfrac{y+z}{b}=\dfrac{z+x-y-z}{a-b}=\dfrac{x-y}{a-b}\)

\(\Rightarrow\dfrac{z+x}{a}.\dfrac{1}{c}=\dfrac{y+z}{b}.\dfrac{1}{c}=\dfrac{x-y}{c\left(a-b\right)}\)(1)

Tương tự : từ \(b\left(z+x\right)=c\left(x+y\right)\)

\(\Rightarrow\dfrac{z+x}{c}=\dfrac{x+y}{b}=\dfrac{z+x-x-y}{c-b}=\dfrac{y-z}{c-b}\)\(\Rightarrow\dfrac{z+x}{c}.\dfrac{1}{a}=\dfrac{x+y}{b}.\dfrac{1}{a}=\dfrac{y-z}{c-b}.\dfrac{1}{a}\)

\(\Rightarrow\dfrac{z+x}{ac}=\dfrac{x+y}{ab}=\dfrac{y-z}{a\left(c-b\right)}\)(2)

từ \(a\left(y+z\right)=c\left(x+y\right)\)

\(\Rightarrow\dfrac{y+z}{c}=\dfrac{x+y}{a}=\dfrac{y+z-x-y}{c-a}=\dfrac{z-x}{c-a}\)\(\Rightarrow\dfrac{y+z}{c}.\dfrac{1}{b}=\dfrac{x+y}{a}.\dfrac{1}{b}=\dfrac{z-x}{c-a}.\dfrac{1}{b}\)

\(\Rightarrow\dfrac{y+z}{bc}=\dfrac{x+y}{ab}=\dfrac{z-x}{b\left(c-a\right)}\)(3)

Kết hợi (1);(2)(3) => ĐPCM

tik mik nha !!!

3 tháng 8 2017

Câu 2 mình đã làm ở đây: Câu hỏi của Huyền Trang Tiến Tài