K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 5 2018

a=x²+y², b=m²+n² với x, y, m, n là số tự nhiên khác 0.

Ta có ab=(x²+y²)(m²+n²)=x²m²+x²n²+y²m²+y²n²

=x²m²+y²n²+2xymn+x²n²+y²m²-2xymn

=(xm+yn)²+(xn+ym)² (đpcm)

21 tháng 11 2015

1.Vì số chính phương bằng bình phương của một số tự nhiên nên có thể thấy ngay số chính phương phải có chữ số tận cùng là một trong các chữ số 0 ; 1 ; 4 ; 5 ; 6 ; 9

2. 

Một số chính phương được gọi là số chính phương chẵn nếu nó là bình phương của một số chẵn, là số chính phương lẻ nếu nó là bình phương của một số lẻ. (Nói một cách khác, bình phương của một số chẵn là một số chẵn, bình phương của một số lẻ là một số lẻ)

 

 

                                                                          

21 tháng 11 2015

chưa hẳn số chính phương bao giờ cũng TC = các chữ số đó đâu

VD: 21 không là số chính phương

81=92 là số chính phương

9 tháng 7 2019

#)Giải :

Đặt \(A=a^2+b^2+c^2\)

Do tích a.b chẵn nên ta xét các trường hợp :

TH1 : Trong a và b có 1 số chẵn và 1 số lẻ 

Giả sử a là số chẵn, còn b là số lẻ 2

=> a2 chia hết cho 4; b2 chia 4 dư 1 => a2 + b2 chia 4 dư 1

=> a2 + b2 = 4m + 1 (m thuộc N)

Chon c = 2m => a2 + b+ c2 = 4m2 + 4m + 1 = (2m + 1)(thỏa mãn) (1)

TH2 : Cả a,b cùng chẵn 

=> a2 + b2 chia hết cho 4 => a2 + b2 = 4n (n thuộc N)

Chọn c = n - 1 => a2 + b2 + c2 = n2 + 2n + 1 = (n + 1)2 (thỏa mãn) (2)

Từ (1) và (2) => Luôn tìm được số nguyên c thỏa mãn đề bài 

Do a, b là số chẵn nên ta xét 2 trường hợp:

TH1a chẵn, b lẻ => a2 + b2 = 4m + 1, khi đó chọn c có dạng 2m ta luôn có a2 + b2 + c2 = 4m+ 4m + 1 = (2m + 1)2 (ĐPCM)

TH2 : a, b chẵn => a2 + b2 = 4n, khi đó chọn c có dạng n-1 ta luôn có a2 + b2 + c2 = n2 + 2n + 1 = (n+1)2 (ĐPCM)

10 tháng 3 2020

a) Ta có: \(a=\left[n\left(n+3\right)\right]\left[\left(n+1\right)\left(n+2\right)\right]+1\)

\(=\left(n^2+3n\right)\left(n^2+3n+2\right)+1\)

Đặt \(n^2+3n+1=t\)(1)

Khi đó: \(a=\left(t-1\right)\left(t+1\right)+1=t^2-1+1=t^2\)

\(\Rightarrow\) a là số chính phương

b) Để a=121 thì \(t^2=121\)\(\Rightarrow t=\pm11\)

+ Với t=11 thì (1) \(\Leftrightarrow n^2+3n+1=11\Leftrightarrow n^2+3n-10=0\)

\(\Leftrightarrow\left(n-2\right)\left(n+5\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}n=2\\n=-5\end{cases}}\)

+ Với n=-11 thì (1)\(\Leftrightarrow n^2+3n+1=-11\Leftrightarrow n^2+3n+12=0\)

\(\Leftrightarrow\left(n-\frac{3}{2}\right)^2+\frac{39}{4}=0\) ( vô lý)

Do đó, pt vo nghiệm

Vậy để a=121 thì n =2 hoặc n=-5