Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/a+1/b=1/c =>ab=c(a+b)
a2+b2+c2=(a+b)2-2ab+c2
thay ab vào là ok
a) Từ giả thiếtta có thể đặt : \(n^2-1=3m\left(m+1\right)\) với m là 1 số nguyên dương
Biến đổi phương trình ta có :
\(\left(2n-1;2n+1\right)=1\) nên dẫn đến :
\(TH1:2n-1=3u^2;2n+1=v^2\)
\(TH2:2n-1=u^2;2n+1=3v^2\)
\(TH1:\)
\(\Rightarrow v^2-3u^2=2\)
\(\Rightarrow v^2=2\left(mod3\right)\)
Còn lại TH2 cho ta \(2n-1\) là số chính phương
b) Ta có :
\(\frac{n^2-1}{3}=k\left(k+1\right)\left(k\in N\right)\)
\(\Leftrightarrow n^2=3k^2+3k+1\)
\(\Leftrightarrow4n^2-1=12k^2+12k+3\)
\(\Leftrightarrow\left(2n-1\right)\left(2n+1\right)=3\left(2k+1\right)^2\)
- Xét 2 trường hợp :
\(TH1:\Rightarrow\hept{\begin{cases}2n-1=3p^2\\2n+1=3q\end{cases}}\)
\(TH2:\Rightarrow\hept{\begin{cases}2n-1=p^2\\2n+1=3q^2\end{cases}}\)
+) TH1 :
Hệ \(PT\Leftrightarrow q^2=3p^2+2=2\left(mod3\right)\) ( loại, vì số chính phương chia 3 dư 0 hoặc 1 )
+) TH2 :
Hệ \(PT\Leftrightarrow p=2a+1\Rightarrow2n=\left(2a+1\right)^2+1\Rightarrow n^2=a^2+\left(a+1\right)^2\) ( dpcm )
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{abc}\Rightarrow\frac{ab+bc+ca}{abc}=\frac{1}{abc}\Rightarrow ab+bc+ca=1\)
Khi đó: \(\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)=\left[ab+bc+ca+a^2\right]\left[ab+bc+ca+b^2\right]\left[ab+bc+ca+c^2\right]\)
\(=\left[a\left(a+b\right)+c\left(a+b\right)\right]\left[b\left(a+b\right)+c\left(a+b\right)\right]\left[b\left(a+c\right)+c\left(a+c\right)\right]\)
\(=\left(a+b\right)^2\left(a+c\right)^2\left(b+c\right)^2\)là số chính phương.
1.Vì số chính phương bằng bình phương của một số tự nhiên nên có thể thấy ngay số chính phương phải có chữ số tận cùng là một trong các chữ số 0 ; 1 ; 4 ; 5 ; 6 ; 9
2.
Một số chính phương được gọi là số chính phương chẵn nếu nó là bình phương của một số chẵn, là số chính phương lẻ nếu nó là bình phương của một số lẻ. (Nói một cách khác, bình phương của một số chẵn là một số chẵn, bình phương của một số lẻ là một số lẻ)
Gỉa sử ab+1=n2 (n thuộc N)
Cho c=a+b+2n.Ta có:
* ac+1=a(a+b+2n)+1
=a2+2na+ab+1=a2+2na+n2=(a+n)2
* bc +1=b(a+b+2n)+1=b2+2nb+ab+1
=b2+2nb+n2=(b+n)2
Vậy ac+1 và bc+1 đều là số chính phương.
Điều kiện đề bài ⇒(2c)2=(a+c)(b+c)⇒(2c)2=(a+c)(b+c). Gọi d=gcd(a+c,b+c)d=gcd(a+c,b+c) thì do a−b=p∈Pa−b=p∈P nên d=1d=1hoặc d=pd=p
Nếu d=1d=1 thì a+c=x2,b+c=y2a+c=x2,b+c=y2 ( xy=2cxy=2c)
⇒p=(x−y)(x+y)⇒p=(x−y)(x+y). p=2p=2 thì vô lý. pp lẻ thì dễ thấy x=p+12=a−b+12x=p+12=a−b+12 và y=a−b−12y=a−b−12
⇒2c=xy=(a−b−1)(a−b+1)4⇒8c+1=(a−b)2⇒2c=xy=(a−b−1)(a−b+1)4⇒8c+1=(a−b)2 là scp
Nếu d=pd=p thì a+c=pm2,b+c=pn2a+c=pm2,b+c=pn2 ( 2c=pmn2c=pmn)
⇒(m−n)(m+n)=1→m=1,n=0⇒(m−n)(m+n)=1→m=1,n=0 (loại)
\(c\left(ac+1\right)^2=\left(2c+b\right)\left(3c+b\right)\)
\(\Leftrightarrow c\left(a^2c^2+2ac+1\right)=6c^2+2bc+3bc+b^2\)
\(\Leftrightarrow c\left(a^2c^2+2ac+1\right)-6c^2-2bc-3bc=b^2\)
\(\Leftrightarrow c\left(a^2c^2+2ac+1-6c-5b\right)=b^2\) ( 1 )
Dễ thấy \(a^2c^2+2ac-6c⋮c\) ( 2 )
Gọi d là ƯC của c và \(a^2c^2+2ac-6c-5b+1\) , ta có :
\(\orbr{\begin{cases}c⋮d\\a^2c^2+2ac-6c-5b+1⋮d\end{cases}}\Rightarrow c-a^2c^2+2ac-6c-5b+1⋮d\) ( 3 )
Từ ( 2 ) và ( 3 ) => 1 - 5b chia hết cho d
Đặt c = kd ; a2c2 + 2ac - 6c - 5b + 1 = td ( \(k;t\in Z\))
\(\Rightarrow c\left(a^2c^2+2ac+1-6c-5b\right)=kd.td=ktd^2\) ( 4 )
Từ ( 1 ) và ( 4 ) => b2 = ktd2
\(\Rightarrow b⋮d\Rightarrow5b⋮d\). Mà 1 - 5b chia hết cho d
\(\Rightarrow1⋮d\Rightarrow d=1\)
=> Đpcm
Sửa lại một tí
Chỗ ( 2 ) chỉnh dấu lại :)
( 3 ) \(c-a^2c^2-2ac+6c+5b-1⋮d\)
Từ ( 2 ) và ( 3 ) => 5b - 1 chia hết cho d
Từ ( 1 ) và ( 4 ) ... => 5b chia hết cho d
=> 1 chia hết cho d => d = 1
=> Đpcm