Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
5A = 1/5 + 2/5^2 +3/5^3 +...+ 11/5^11
=> 4A= 1/5+1/5^2 +1/5^3 +...+1/5^11 - 11/5^12
=> 20A = 1+1/5+1/5^2+...+1/5^10 - 11/5^11
=> 16A = 1-1/5^11+11/5^12-11/5^11
Vì 1-1/5^11 < 1 ; 11/5^12 -11/5^11 < 0
=> 16A < 1
=> A < 1/16
a, Xét các dạng của n khi chia cho 2: n = 2k; n = 2k+1(k ∈ N)
+) Nếu n = 2k
(n+2)(n+5) = (2k+2)(2k+5) = 2(2k+1)(2k+5) ⋮ 2
+) Nếu n = 2k+1
(n+2)(n+5) = (2k+3)(2k+6) = 2(2k+3)(k+3) ⋮ 2
Vậy được điều phải chứng minh.
b, c, Tương tự với các TH: n = 3k; n = 3k+1; n = 3k+2(k ∈ N)
bn ơi đề sai:nếu n=1 thì n2+n+1=12+1+1=1+1+1=3 ko chia hết cho 5
\(n^2+n+1=n.n+n+1=n\left(n+1\right)+1\)
Rõ ràng ta thấy \(n\left(n+1\right)\)là tích của hai số tự nhiên liên tiếp nên chúng chỉ tận cùng bằng 0 , 2 , 6
Suy ra đa thức trên có tận cùng bằng 1 , 3, 7
Vậy \(n^2+n+1\)không bao giờ chia hết cho 5
n 2+n+1 = n(n + 1) +1.
Vì n(n+1) là tích của hai số tự nhiên liên tiếp nên có chữ số tận cùng là 0, 2, 6
Do đó n(n+1) + 1 có chữ số tận cùng là 1, 3, 7.
Vì 1, 3, 7 không chia hết cho 2 và 5 nên n(n+1) + 1 không chia hết cho 2 và 5
Vậy n 2+n+1 không chia hết cho 2 và 5