Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Vì n và n+1 là hai số liên tiếp
nên \(n\left(n+1\right)⋮2\)
b: Vì n;n+1;n+2 là ba số liên tiếp
nên \(n\left(n+1\right)\left(n+2\right)⋮3!\)
hay \(n\left(n+1\right)\left(n+2\right)⋮6\)
c: Vì n(n+1) chia hết cho 2
nên \(n\left(n+1\right)\left(2n+1\right)⋮2\)

a) Vì 3\(⋮\)n
=> n\(\in\)Ư(3)={ 1; 3 }
Vậy, n=1 hoặc n=3

Bài 1 .
a) Gọi d \(\in\)ƯC ( n + 1 , 2n + 3 ) . Ta có :
2n + 3 - 2( n + 1 ) \(⋮\)cho d
\(\Rightarrow\)1 chia hết cho d => d = + , - 1
b ) Gọi d \(\in\)ƯC ( 2n + 3 , 4n + 8 ) . Ta có :
4n + 8 - 2( 2n + 3 ) \(⋮\)cho d
\(\Rightarrow\)2 chia hết cho d . Do đó d là Ư của số lẻ 2n + 3 nên d = + , - 1
c ) Xét buểu thức 5( 3n + 2 ) - 3( 5n + 3 ).

a; CM: A = n(n + 1).(2n + 1) ⋮ 6
A = n(n + 1).(2n + 1)
+ Ta có: n + 1 - n = (n - n) + 1 = 1 (là số lẻ)
Vậy n + 1 và n là hai số khác tính chẵn lẻ, nên một trong hai số nhất định phải có một số là số chẵn mà số chẵn thì luôn chia hết cho 2. Vậy:
A ⋮ 2 ∀ n ∈ N (1)
+ TH1: n = 3k ta có: n ⋮ 3
+ TH2: n = 3k + 1 ta có:
2n + 1 = 2.(3k + 1) + 1= 6k + 2 + 1 = 6k + (2 + 1) = 6k + 3 ⋮ 3
TH3: n = 3k + 2 ta có:
n + 1 = 3k + 2 + 1 = 3k + (2+ 1) = 3k + 3 ⋮ 3
Từ các trường hợp 1; 2; 3 ta có: A ⋮ 3 ∀ n (2)
Kết hợp (1) và (2) ta có: A ⋮ 2 và 3 ⇒ A ∈ BC(2; 3)
2 = 2; 3 = 3; BCNN(2; 3) = 2.3 = 6
Vậy A ∈ B(6) hay A ⋮ 6 ∀ n (đpcm)
a, Xét các dạng của n khi chia cho 2: n = 2k; n = 2k+1(k ∈ N)
+) Nếu n = 2k
(n+2)(n+5) = (2k+2)(2k+5) = 2(2k+1)(2k+5) ⋮ 2
+) Nếu n = 2k+1
(n+2)(n+5) = (2k+3)(2k+6) = 2(2k+3)(k+3) ⋮ 2
Vậy được điều phải chứng minh.
b, c, Tương tự với các TH: n = 3k; n = 3k+1; n = 3k+2(k ∈ N)