K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2018

a, Xét các dạng của n khi chia cho 2: n = 2k; n = 2k+1(k ∈ N)

+) Nếu n = 2k

(n+2)(n+5) = (2k+2)(2k+5) = 2(2k+1)(2k+5) ⋮ 2

+) Nếu n = 2k+1

(n+2)(n+5) = (2k+3)(2k+6) = 2(2k+3)(k+3)2

Vậy được điều phải chứng minh.

b, c, Tương tự với các TH: n = 3k; n = 3k+1; n = 3k+2(kN) 

a: Vì n và n+1 là hai số liên tiếp

nên \(n\left(n+1\right)⋮2\)

b: Vì n;n+1;n+2 là ba số liên tiếp

nên \(n\left(n+1\right)\left(n+2\right)⋮3!\)

hay \(n\left(n+1\right)\left(n+2\right)⋮6\)

c: Vì n(n+1) chia hết cho 2 

nên \(n\left(n+1\right)\left(2n+1\right)⋮2\)

a) Vì 3\(⋮\)n

=> n\(\in\)Ư(3)={ 1; 3 }

Vậy, n=1 hoặc n=3

17 tháng 10 2018

A:    n=3;1                  E:     n=2

B:     n=6;2                  F:    n=2

c:     n=1                     G:     n=2

D:    n=2                      H:     n=5

Bài 1 .

a) Gọi d \(\in\)ƯC ( n + 1 , 2n + 3 ) . Ta có :

2n + 3 - 2( n + 1 ) \(⋮\)cho d

\(\Rightarrow\)1 chia hết cho d => d = + , - 1

b ) Gọi d \(\in\)ƯC ( 2n + 3 , 4n + 8 ) . Ta có :

4n + 8 - 2( 2n + 3 ) \(⋮\)cho d

\(\Rightarrow\)2 chia hết cho d . Do đó d là Ư của số lẻ 2n + 3 nên d = + , - 1

c ) Xét buểu thức 5( 3n + 2 ) - 3( 5n + 3 ).

22 tháng 4 2017

\(A=5^{2n+1}+2^{n+4}+2^{n+1}\)

\(=5^{2n+1}+2n\left(2^4+2^1\right)\)

r s nữa có ............

pn tự làm nka ....

15 tháng 2

a; CM: A = n(n + 1).(2n + 1) ⋮ 6

A = n(n + 1).(2n + 1)

+ Ta có: n + 1 - n = (n - n) + 1 = 1 (là số lẻ)

Vậy n + 1 và n là hai số khác tính chẵn lẻ, nên một trong hai số nhất định phải có một số là số chẵn mà số chẵn thì luôn chia hết cho 2. Vậy:

A ⋮ 2 ∀ n ∈ N (1)

+ TH1: n = 3k ta có: n ⋮ 3

+ TH2: n = 3k + 1 ta có:

2n + 1 = 2.(3k + 1) + 1= 6k + 2 + 1 = 6k + (2 + 1) = 6k + 3 ⋮ 3

TH3: n = 3k + 2 ta có:

n + 1 = 3k + 2 + 1 = 3k + (2+ 1) = 3k + 3 ⋮ 3

Từ các trường hợp 1; 2; 3 ta có: A ⋮ 3 ∀ n (2)

Kết hợp (1) và (2) ta có: A ⋮ 2 và 3 ⇒ A ∈ BC(2; 3)

2 = 2; 3 = 3; BCNN(2; 3) = 2.3 = 6

Vậy A ∈ B(6) hay A ⋮ 6 ∀ n (đpcm)