K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 5 2015

Ta có: m.n(m2 – n2) = m.n[(m2 – 1) – ( n2 – 1)]
= n[m(m2 – 1) – m{n( n2 – 1)}]
=m.n( m – 1)( m + 1) – m.n( n – 1)(n + 1)
Vì: m( m – 1)(m + 1) chia hết cho 6 (tích của 3 số tự nhiên liên tiếp)

và n(n – 1)(n + 1) chia hết cho 6 (tích của 3 số tự nhiên liên tiếp

=> mn(m- n2) chia hết cho 6.(đpcm)

Cho anh **** nha

25 tháng 5 2015

what? lớp 5 mà học lũy thừa cơ á

DD
29 tháng 1 2021

Ta có: \(mn\left(m^{30}-n^{30}\right)=mn\left[\left(m^{30}-1\right)-\left(n^{30}-1\right)\right]=nm\left(m^{30}-1\right)-mn\left(n^{30}-1\right)\)

Do đó, nếu ta chứng minh được với mọi số nguyên dương \(k\)thì \(k\left(k^{30}-1\right)⋮14322\)thì ta sẽ có đpcm. 

Ta có: \(14322=2.3.7.11.31\).

Xét \(p\in\left\{2,3,7,11,31\right\}\). Nếu \(k\)chia hết cho \(p\)thì hiển nhiên \(k\left(k^{30}-1\right)\)chia hết cho \(p\). Nếu \(k\)không chia hết cho \(p\)thì \(k\)nguyên tố với \(p\). Theo định lí Fermat nhỏ, ta có:  \(k^{p-1}-1⋮p\).

Mặt khác, với mọi \(p\in\left\{2,3,7,11,31\right\}\)ta có \(\left(p-1\right)|30\).

Từ đó suy ra: \(k^{30}-1⋮p\).

Do vậy \(k\left(k^{30}-1\right)⋮p\)với mọi \(p\in\left\{2,3,7,11,31\right\}\).

Vậy \(k\left(k^{30}-1\right)⋮14322\).

Từ đây ta có đpcm. 

7 tháng 1 2019

Ta có: 4n+7 \(⋮n\)

Vì 4n \(⋮n\) nên 7 \(⋮\) n

\(\Rightarrow n\in\left\{1;7;-1;-7\right\}\)

Vậy.........................( Bạn tự kết luận nhé!)

11 tháng 1 2019

thanks bạn nhéoaoavuihaha

13 tháng 10 2018

 A=mn(m²-n²) 
= mn(m² - 1 - n² + 1) 
= mn [(m-1)(m+1) - (n-1)(n+1)] 
= n(m-1)m(m+1) - m(n-1)n(n+1) 
{n(m-1)m(m+1) chia hết cho 3 (tính 3 số tự nhiên liên tiếp) 
{m(n-1)n(n+1) chia hết cho 3(tính 3 số tự nhiên liên tiếp) 
=> n(m-1)m(m+1) - m(n-1)n(n+1) chia hết cho 3 
=> A chia hết cho 3 

14 tháng 8 2015

a) Ta có: m^3-m = m(m^2-1^2) = m.(m+1)(m-1) là tích của 3 số nguyên liên tiếp

 => m(m+1)(m-1) chia hết cho 3 và 2

Mà (3,2) = 1

=> m(m+1)(m-1) chia hết cho 6

=> m^3 - m  chia hết cho 6  V m thuộc Z

b) Ta có: (2n-1)-2n+1 = 2n-1-2n+1 = 0-1+1 = 0 luôn chia hết cho 8

=> (2n-1)-2n+1 luôn chia hết cho 8 V n thuộc Z

Tick nha pham thuy trang

 

14 tháng 8 2015

a, m3 - m = m( m2 - 12) = m(m - 1 ) ( m + 1) => 3 số nguyên liên tiếp : hết cho 6

mk chỉ biết có thế thôi

9 tháng 6 2015

ta có 

A=n^5-n
=n(n^4-1)
=n(n-1)(n+1)(n^2+1)
n(n-1)(n+1) chia hết cho 6(1)
nếu n=5k => A chia hết cho 5.6=30
nếu n=5k+1 =>n -1 chia hết cho 5 =>từ 1=> A chia hết cho 30
Nếu n=5k+2 =>t n^2+1=25k^2+20k+5 chia hết cho 5
từ 1=> A chia hết cho 30
nếu n=5k+3 =>^2+1=25k^2+30k+10 chia hết cho 5
=>A chia hết cho 30
Nếu n=5k+4 =>n+1=5k+5 chia hết cho 5
từ 1=>A chia hết cho 30
Vậy với n nguyên dương thì n^5-n chia hết cho 30