Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=1+7+7^1+7^2+...+7^{101}\)
\(=\left(1+7\right)+7\left(1+7\right)+...+7^{100}\left(1+7\right)\)
\(=8\cdot\left(1+7+...+7^{100}\right)⋮8\)
\(A=\left(-7\right)+\left(-7\right)^2+......+\left(-7\right)^{2006}+\left(-7\right)^{2007}\)
\(=\left[\left(-7\right)+\left(-7\right)^2+\left(-7\right)^3\right]+\left[\left(-7\right)^4+\left(-7\right)^5+\left(-7\right)^6\right]+.......\) \(+\left[\left(-7\right)^{2005}+\left(-7\right)^{2006}+\left(-7\right)^{2007}\right]\)
\(=\left(-7\right)\left[1+\left(-7\right)+\left(-7\right)^2\right]+......+\left(-7\right)^{2005}\left[1+\left(-7\right)+\left(-7\right)^2\right]\)
\(=\left(-7\right).43+\left(-7\right)^3.43+......+\left(-7\right)^{2005}.43\)
\(=43\left[\left(-7\right)+\left(-7\right)^3+.....+\left(-7\right)^{2005}\right]\).
Suy ra A chia hết cho 43.
A=(-7+-7^2+-7^3)+.....+(-7^2005+-7^2006+-7^2007)
A=-7(1+-7+-7^2)+.....+-7^2005(1+-7+-7^2)
A=-7.43+....+-7^2005.43\(⋮\)43\(\Rightarrow\)dpcm
\(4.3^{2x}-2.9^x-54=0\) \(4.9^x-2.9^x-54=0\) \(2.9^x=54\) \(9^x=27\) x=1,5