\(\frac{m}{n}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\fr...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 7 2015

\(\frac{m}{n}=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{1331}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{1330}\right)\)

\(\frac{m}{n}=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{1330}+\frac{1}{1331}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{1330}\right)\)

\(\frac{m}{n}=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{1330}+\frac{1}{1331}\right)-\left(1+\frac{1}{2}+...+\frac{1}{665}\right)\)

\(\frac{m}{n}=\frac{1}{666}+\frac{1}{667}+...+\frac{1}{1330}+\frac{1}{1331}\)

\(\frac{m}{n}=\left(\frac{1}{666}+\frac{1}{1331}\right)+\left(\frac{1}{667}+\frac{1}{1330}\right)+...+\left(\frac{1}{998}+\frac{1}{999}\right)\)

\(\frac{m}{n}=\frac{1997}{666.1331}+\frac{1997}{667.1330}+...+\frac{1997}{998.999}=\frac{1997k_1+1997.k_2+...+1997.k_{333}}{666.667...1331}\)

\(\frac{m}{n}=\frac{1997.\left(k_1+k_2+...+k_{333}\right)}{666.667...1330.1331}\) trong đó: k1;...; k333 là các thừa số phụ của các phân số trong tổng 

Nhận xét: phân số trên có tử chia hết cho 1997 là số nguyên tố; mẫu số không chia hết cho thừa số nguyên tố 1997 nên khi rút gọn tử vẫn chia hết cho 1997

=> m chia hết cho 1997

NV
1 tháng 3 2020

\(\frac{1}{m}+\frac{1}{n}+\frac{1}{p}-\frac{1}{m+n+p}=0\)

\(\Leftrightarrow\frac{m+n}{mn}+\frac{m+n}{p\left(m+n+p\right)}=0\)

\(\Leftrightarrow\left(m+n\right)\left(\frac{pm+pn+p^2+mn}{mnp\left(m+n+p\right)}\right)=0\)

\(\Leftrightarrow\left(m+n\right)\left(n+p\right)\left(p+m\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}m=-n\\m=-p\\p=-n\end{matrix}\right.\)

Cả 3 TH là như nhau

Ví dụ như TH1: \(\frac{1}{m^{2017}}+\frac{1}{-m^{2017}}+\frac{1}{p^{2017}}=\frac{1}{p^{2017}}\)

\(\frac{1}{m^{2017}-m^{2017}+p^{2017}}=\frac{1}{p^{2017}}\) (đpcm)

15 tháng 10 2020

3.

\(5a^2+2ab+2b^2=\left(a^2-2ab+b^2\right)+\left(4a^2+4ab+b^2\right)\)

\(=\left(a-b\right)^2+\left(2a+b\right)^2\ge\left(2a+b\right)^2\)

\(\Rightarrow\sqrt{5a^2+2ab+2b^2}\ge2a+b\)

\(\Rightarrow\frac{1}{\sqrt{5a^2+2ab+2b^2}}\le\frac{1}{2a+b}\)

Tương tự \(\frac{1}{\sqrt{5b^2+2bc+2c^2}}\le\frac{1}{2b+c};\frac{1}{\sqrt{5c^2+2ca+2a^2}}\le\frac{1}{2c+a}\)

\(\Rightarrow P\le\frac{1}{2a+b}+\frac{1}{2b+c}+\frac{1}{2c+a}\)

\(\le\frac{1}{9}\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}+\frac{1}{c}+\frac{1}{c}+\frac{1}{a}\right)\)

\(=\frac{1}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\le\frac{1}{3}.\sqrt{3\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)}=\frac{\sqrt{3}}{3}\)

\(\Rightarrow MaxP=\frac{\sqrt{3}}{3}\Leftrightarrow a=b=c=\sqrt{3}\)

19 tháng 11 2016

Ta có

\(\frac{1+m^2}{1+n^2}=1+m^2-\frac{n^2\left(1+m^2\right)}{1+n^2}\le1+m^2-\frac{n^2\left(1+m^2\right)}{2}\)

Tương tự ta có 

\(\frac{1+n^2}{1+p^2}\le1+n^2-\frac{p^2\left(1+n^2\right)}{2}\)

\(\frac{1+p^2}{1+m^2}\le1+p^2-\frac{m^2\left(1+p^2\right)}{2}\)

\(\Rightarrow A\le3+m^2+n^2+p^2-\frac{n^2\left(1+m^2\right)+p^2\left(1+n^2\right)+m^2\left(1+p^2\right)}{2}\)

\(=\frac{m^2+n^2+p^2-\left(m^2N^2+n^2p^2+p^2m^2\right)}{2}+3\)

\(\le\frac{m^2+n^2+p^2+2\left(mn+np+pm\right)}{2}+3\)

\(=\frac{\left(m+n+p\right)^2}{2}+3=\frac{1}{2}+3=\frac{7}{2}\)

19 tháng 11 2016

\(a,b,c\in\left[0,1\right]\) do đó \(a^2+b^2+c^2\le a+b+c=1\)

Ta có: \(T=\text{∑}\left(a^2+1-\frac{b^2a^2+b^2}{1+b^2}\right)\)\(\le\text{∑}a^2+3-\text{∑}\frac{b^2a^2+b^2}{2}\)

\(=3+\frac{\text{∑}a^2-\text{∑}a^2b^2}{2}\le3+\frac{1}{2}\le\frac{7}{2}\)