K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔBMO có \(\widehat{BMO}+\widehat{MBO}+\widehat{MOB}=180^0\)

=>\(\widehat{BMO}+\widehat{MOB}=180^0-60^0=120^0\)(1)

\(\widehat{MOB}+\widehat{MON}+\widehat{NOC}=180^0\)

=>\(\widehat{MOB}+\widehat{NOC}=180^0-60^0=120^0\left(2\right)\)

Từ (1),(2) suy ra \(\widehat{BMO}=\widehat{CON}\)

Xét ΔBMO và ΔCON có

\(\widehat{BMO}=\widehat{CON}\)

\(\widehat{MBO}=\widehat{OCN}\left(=60^0\right)\)

Do đó: ΔBMO~ΔCON

b: ΔBMO~ΔCON

=>\(\dfrac{OM}{ON}=\dfrac{BM}{CO}=\dfrac{BM}{BO}\)

c:

\(\dfrac{OM}{ON}=\dfrac{BM}{BO}\)

=>\(\dfrac{BM}{OM}=\dfrac{BO}{ON}\)

Xét ΔBMO và ΔOMN có

\(\dfrac{BM}{OM}=\dfrac{BO}{ON}\)

\(\widehat{MBO}=\widehat{MON}\left(=60^0\right)\)

Do đó: ΔBMO~ΔOMN

=>\(\widehat{BMO}=\widehat{OMN}\)

=>MO là phân giác của góc BMN

15 tháng 1 2022

Answer:

C O B A N M

a) Ta có:

Góc NOC = 180 độ - góc MON - góc MOB

Góc NOC = 180 độ - góc MBO - góc MOB

Góc NOC = góc BMO

Xét tam giác MBO và tam giác OCN

Góc MBO = góc OCN = 60 độ 

Góc BMO = góc NOC

=> Tam giác MBO ~ tam giác OCN (g-g) 

=> \(\frac{MO}{ON}=\frac{BO}{CN}=\frac{MB}{OC}\)

b) Do O là trung điểm BC => OC = BO

\(\Rightarrow\frac{MO}{ON}=\frac{MB}{OB}\)

\(\Rightarrow\frac{MO}{MB}=\frac{ON}{OB}\)

\(\Rightarrow\frac{OB}{NO}=\frac{MB}{MO}\)

Xét tam giác OBM và tam giác NOM

Góc OBM = góc NOM = 60 độ

\(\frac{MB}{MO}=\frac{OB}{NO}\)

=> Tam giác OBM ~ tam giác NOM (c-g-c)

=> Góc OMB = góc OMN

=> MO là tia phân giác góc BMN

26 tháng 4 2016

mk cũng đang vướng bài này, ai biet thi chi luon mk vs

25 tháng 9 2017

uh,mk nghĩ mãi hông ra

20 tháng 11 2018

3. A B C D P Q I

20 tháng 11 2018

Trên tia đối của tia BA lấy I sao cho BI = DQ

\(\Delta DCQ=\Delta BCI\left(c.g.c\right)\Rightarrow\hept{\begin{cases}CQ=CI\\\widehat{DCQ}=\widehat{BCI}\end{cases}}\)

Ta có: \(\widehat{QCI}=\widehat{QCB}+\widehat{BCI}=\widehat{QCB}+\widehat{DCQ}=\widehat{BCD}=90^0\)

Ta có: \(AP+AQ+PQ=2AB\)

\(\Rightarrow AP+AQ+PQ=AP+PB+AQ+QD\)

\(\Rightarrow PQ=PB+QD\)

\(\Rightarrow PQ=PB+BI\Rightarrow PQ=PI\)

\(\Delta PCQ=\Delta PCI\left(c.c.c\right)\Rightarrow\widehat{PCQ}=\widehat{PCI}=\frac{\widehat{QCI}}{2}=\frac{90^0}{2}=45^0\)

29 tháng 9 2016

A B C M N P O

Ta có : \(\frac{OM}{AM}=\frac{S_{BOC}}{S_{ABC}}\) ; \(\frac{ON}{BN}=\frac{S_{AOC}}{S_{ABC}}\) ; \(\frac{OP}{CP}=\frac{S_{AOB}}{S_{ABC}}\)

\(\Rightarrow\frac{OM}{AM}+\frac{ON}{BN}+\frac{OP}{CP}=\frac{S_{ABC}}{S_{ABC}}=1\)

Áp dụng bđt Bunhiacopxki, ta có : 

\(\frac{AM}{OM}+\frac{BN}{ON}+\frac{CP}{OP}=\left(\frac{AM}{OM}+\frac{BN}{ON}+\frac{CP}{OP}\right).\left(\frac{OM}{AM}+\frac{ON}{BN}+\frac{OP}{CP}\right)\ge\)

\(\ge\left(\sqrt{\frac{AM}{OM}.\frac{OM}{AM}}+\sqrt{\frac{BN}{ON}.\frac{ON}{BN}}+\sqrt{\frac{CP}{OP}.\frac{OP}{CP}}\right)^2=\left(1+1+1\right)^2=9\)

Vậy \(\frac{AM}{OM}+\frac{BN}{ON}+\frac{CP}{OP}\ge9\) (đpcm)

9 tháng 1 2018

Neu đề bài trên kia là cho >_ 6 thì chứng minh thế nào