K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 9 2018

\(\frac{a^3}{b+2c}+\frac{b^3}{c+2a}+\frac{c^3}{a+2b}=\frac{a^4}{ab+2ac}+\frac{b^4}{bc+2ab}+\frac{c^4}{ca+2bc}\ge\frac{\left(a^2+b^2+c^2\right)^2}{3\left(ab+bc+ca\right)}\ge\frac{\left(a^2+b^2+c^2\right)^2}{3\left(a^2+b^2+c^2\right)}=\frac{a^2+b^2+c^2}{3}\)

21 tháng 6 2017

\(\frac{a^3}{b+2c}+\frac{b^3}{c+2a}+\frac{c^3}{a+2b}\)

\(=\frac{a^4}{ab+2ca}+\frac{b^4}{bc+2ab}+\frac{c^4}{ca+2bc}\)

\(\ge\frac{\left(a^2+b^2+c^2\right)^2}{3\left(ab+bc+ca\right)}\ge\frac{\left(a^2+b^2+c^2\right)\left(ab+bc+ca\right)}{3\left(ab+bc+ca\right)}=\frac{1}{3}\)

9 tháng 12 2018

a)Bunhia:

\(\left(1+2\right)\left(b^2+2a^2\right)\ge\left(1.b+\sqrt{2}.\sqrt{2}a\right)^2=\left(b+2a\right)^2\)

b)\(ab+bc+ca=abc\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=1\)

Áp dụng bđt câu a

=>VT\(\ge\)\(\dfrac{b+2a}{\sqrt{3}ab}+\dfrac{c+2b}{\sqrt{3}bc}+\dfrac{a+2c}{\sqrt{3}ca}\)

\(\Leftrightarrow VT\ge\dfrac{1}{a}+\dfrac{2}{b}+\dfrac{1}{b}+\dfrac{2}{c}+\dfrac{1}{c}+\dfrac{2}{a}=3=VP\)

Tự tìm dấu "="

9 tháng 12 2018

Nguyễn Việt LâmMashiro ShiinaBNguyễn Thanh HằngonkingCẩm MịcFa CTRẦN MINH HOÀNGhâu DehQuân Tạ MinhTrương Thị Hải Anh

8 tháng 5 2019

Vì a;b;c là 3 cạnh của tam giác nên mỗi nhân tử của VP đều dương,áp dụng bđt Cauchy:

\(\sqrt{\left(a+b-c\right)\left(b+c-a\right)}\le\frac{a+b-c+b+c-a}{2}=b\)

\(\sqrt{\left(b+c-a\right)\left(a+c-b\right)}\le\frac{b+c-a+a+c-b}{2}=c\)

\(\sqrt{\left(a+c-b\right)\left(a+b-c\right)}\le\frac{a+c-b+a+b-c}{2}=a\)

Nhân theo vế => ddpcm "=" khi a=b=c

8 tháng 5 2019

Câu hỏi dài nên mỗi ý mk làm thành 1 câu nha

21 tháng 7 2015

Đánh càng ít càng tốt. Kết quả cho "a/a^2+2b+3"

https://vn.answers.yahoo.com/question/index?qid=20130108011703AAV4ogs

Cho 3 số dương a,b,c và a^2+b^2+c^2=3. cmr? | Yahoo Hỏi & Đáp

18 tháng 11 2020

Theo đánh giá của bđt AM-GM ta có  \(a^2+1\ge2\sqrt{a^2.1}=2a\Rightarrow a^2+2b+3\ge2a+2b+2\)

Suy ra \(\frac{a}{a^2+2b+3}\le\frac{a}{2a+2b+1}=\frac{a}{2\left(a+b+1\right)}=\frac{1}{2}.\frac{a}{a+b+1}\)

Chứng mình tương tự và cộng theo vế ta được \(LHS\le\frac{1}{2}.\frac{a}{a+b+1}+\frac{1}{2}.\frac{b}{b+c+1}+\frac{1}{2}.\frac{c}{c+a+1}\)

\(=\frac{1}{2}\left(\frac{a}{a+b+1}+\frac{b}{b+c+1}+\frac{c}{c+a+1}\right)=\frac{1}{2}\left(3-\frac{b+1}{a+b+1}-\frac{c+1}{b+c+1}-\frac{a+1}{c+a+1}\right)\)

\(=\frac{1}{2}\left[3-\frac{\left(b+1\right)^2}{\left(b+1\right)\left(a+b+1\right)}-\frac{\left(c+1\right)^2}{\left(c+1\right)\left(b+c+1\right)}-\frac{\left(a+1\right)^2}{\left(a+1\right)\left(c+a+1\right)}\right]\)

\(\le\frac{1}{2}\left[3-\frac{\left(a+b+c+3\right)^2}{\left(b+1\right)\left(a+b+1\right)+\left(c+1\right)\left(b+c+1\right)+\left(a+1\right)\left(c+a+1\right)}\right]\)

\(=\frac{1}{2}\left[3-\frac{\left(a+b+c+3\right)^2}{ab+b^2+b+a+b+1+cb+c^2+c+b+c+1+ca+a^2+a+c+a+1}\right]\)

\(=\frac{1}{2}\left[3-\frac{\left(a+b+c+3\right)^2}{a^2+b^2+c^2+ab+bc+ca+3\left(a+b+c\right)+3}\right]\)

\(=\frac{1}{2}\left[3-\frac{2\left(a+b+c+3\right)^2}{\left(a^2+b^2+c^2+2ab+2bc+2ca\right)+6\left(a+b+c\right)+9}\right]\)

\(=\frac{1}{2}\left[3-\frac{2\left(a+b+c+3\right)^2}{\left(a+b+c\right)^2+2.3.\left(a+b+c\right)+3^2}\right]=\frac{1}{2}\left[3-\frac{2\left(a+b+c+3\right)^2}{\left(a+b+c+3\right)^2}\right]\)

\(=\frac{1}{2}\left[3-2\right]=\frac{1}{2}\)

19 tháng 10 2017

\(\frac{a^2}{a+b^2}=a-\frac{ab^2}{a+b^2}\ge a-\frac{\sqrt{ab^2}}{2}=a-\frac{\sqrt{ab.b}}{2}\ge a-\frac{ab+b}{4}\)

CMTT: \(VT\ge2.\left(a+b+c-\frac{a+b+c+ab+cb+ca}{4}\right)\)

Ta lại có \(3\left(ab+bc+ca\right)\le\left(a+b+c\right)^2\le\left(a+b+c\right)\sqrt{3\left(a^2+b^2+c^2\right)}=3\left(a+b+c\right)\)

=> \(ab+bc+ca\le a+b+c\)

=> \(VT\ge2\left(a+b+c-\frac{a+b+c}{2}\right)=a+b+c\left(dpcm\right)\)

Dấu bằng khi a=b=c=1

18 tháng 3 2018

Mình có một cách khác. Các bạn xem nhé!

Đặt a  = b  = c . Ta có:

\(\frac{2a^2}{a+b^2}+\frac{2b^2}{b+c^2}+\frac{2c^2}{c+a^2}=\frac{2a^2}{a+a^2}+\frac{2a^2}{a+a^2}+\frac{2a^2}{a+a^2}=3\left(\frac{2a^2}{a^3}\right)\ge a^3\)(Do a = b = c nên ta thế a,b,c = a)

\(\Leftrightarrow\frac{2a^2}{a^3}+\frac{2b^2}{b^3}+\frac{2c^2}{c^3}=\frac{2a^2+2b^2+2c^2}{a^3+b^3+c^3}=\frac{6\left(a^2+b^2+c^2\right)}{\left(a^2.b^2.c^2\right):\left(a+b+c\right)}=\frac{6}{2}=3\)

\(\Rightarrow\frac{2a^2}{a+b^2}+\frac{2b^2}{b+c^2}+\frac{2c^2}{c+a^2}>a+b+c^{\left(đpcm\right)}\)

Dấu = xảy ra khi a =b = c  = 1

12 tháng 9 2018

Xét vế trái \(\frac{2.a^2}{a+b^2}+\frac{2.b^2}{b+c^2}+\frac{2c^2}{c+a^2}=\frac{2a^4}{a^3+a^2.b^2}+\frac{2.b^4}{b^3+c^2.b^2}+\frac{2c^4}{c^3+a^2.c^2}\)

\(\ge2.\frac{\left(a^2+b^2+c^2\right)^2}{a^3+b^3+c^3+a^2.b^2+b^2.c^2+a^2.c^2}\)( Bất đẳng thức Svac-xơ )

Ta có \(a^4+a^2\ge2.a^3\Rightarrow a^3\le\frac{a^4+a^2}{2}\)

Tương tự \(b^3\le\frac{b^4+b^2}{2}\)

\(c^3\le\frac{c^4+c^2}{2}\)

Do đó \(2.\frac{\left(a^2+b^2+c^2\right)^2}{a^3+b^3+c^3+a^2.b^2+b^2.c^2+a^2.c^2}\ge\frac{2.\left(a^2+b^2+c^2\right)^2}{\frac{a^4+a^2}{2}+\frac{b^4+b^2}{2}+\frac{c^4+c^2}{2}+a^2.b^2+b^2.c^2+a^2.c^2}\)

\(=\frac{2.\left(a^2+b^2+c^2\right)^2}{\frac{a^4+b^4+c^4+2a^2c^2+2b^2c^2+2a^2b^2+a^2+b^2+c^2}{2}}\)

\(=\frac{4.\left(a^2+b^2+c^2\right)^2}{\left(a^2+b^2+c^2\right)^2+a^2+b^2+c^2}\)

\(=\frac{4.3^2}{3^2+3}=3=a^2+b^2+c^2\ge a+b+c\)

Vậy \(\frac{2.a^2}{a+b^2}+\frac{2.b^2}{b+c^2}+\frac{2c^2}{c+a^2}\ge a+b+c\)với \(a^2+b^2+c^2=3\)

7 tháng 10 2020

Ta có phép biến đổi sau : \(\frac{a^2}{a+b^2}=a-\frac{ab^2}{a+b^2}\ge a-\frac{\sqrt{ab^2}}{2}=a-\frac{\sqrt{a.b.b}}{2}\ge a-\frac{ab+b}{4}\)

Bằng cách chứng minh tương tự : \(\frac{b^2}{b+c^2}\ge b-\frac{bc+c}{4}\)\(\frac{c^2}{c+a^2}\ge c-\frac{ca+a}{4}\)

Cộng theo vế các bất đẳng thức cùng chiều : \(\frac{a^2}{a+b^2}+\frac{b^2}{b+c^2}+\frac{c^2}{c+a^2}\ge a+b+c-\frac{ab+bc+ca+a+b+c}{4}\)

\(< =>\frac{2a^2}{a+b^2}+\frac{2b^2}{b+c^2}+\frac{2c^2}{c+a^2}\ge2\left(a+b+c-\frac{ab+bc+ca+a+b+c}{4}\right)\)

Đến đây ta cần chỉ ra được : \(2\left(a+b+c-\frac{ab+bc+ca+a+b+c}{4}\right)\ge a+b+c\)(*)

Mặt khác : \(3\left(ab+bc+ca\right)\le\left(a+b+c\right)^2\le\left(a+b+c\right)\sqrt{3\left(a^2+b^2+c^2\right)}=3\left(a+b+c\right)\)

\(< =>ab+bc+ca\le a+b+c\)

Khi đó ta suy ra được : \(2\left(a+b+c-\frac{ab+bc+ca+a+b+c}{4}\right)\ge2\left(a+b+c-\frac{2\left(a+b+c\right)}{4}\right)\)

\(=2\left(a+b+c-\frac{a+b+c}{2}\right)=2\left(\frac{2a+2b+2c-a-b-c}{2}\right)=2.\frac{a+b+c}{2}=a+b+c\)

Vậy bài toán đã được hoàn tất phép chứng minh . Đẳng thức xảy ra khi và chỉ khi \(a=b=c=1\)

AH
Akai Haruma
Giáo viên
31 tháng 12 2019

Lời giải:

Áp dụng BĐT Cauchy-Schwarz và AM-GM:

\(A=\frac{a^4}{a^2+2ab}+\frac{b^4}{ab+2b^2}+\frac{b^4}{b^2+2bc}+\frac{c^4}{bc+2c^2}+\frac{c^4}{c^2+2ac}+\frac{a^4}{ca+2a^2}\)

\(\geq \frac{(a^2+b^2+b^2+c^2+c^2+a^2)^2}{3(a^2+b^2+c^2+ab+bc+ac)}=\frac{4(a^2+b^2+c^2)^2}{3(a^2+b^2+c^2+ab+bc+ac)}\geq \frac{4(a^2+b^2+c^2)^2}{3(a^2+b^2+c^2+a^2+b^2+c^2)}\)

hay \(A\geq \frac{2}{3}(a^2+b^2+c^2)=2\)

Vậy $A_{\min}=2$. Dấu "=" xảy ra khi $a=b=c=1$

31 tháng 12 2019

Em cảm ơn ak !!!