Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trước tiên chứng minh BĐT \(\frac{x^3+1}{x+2}\ge\frac{7}{18}x^2+\frac{5}{18}\left(x>0\right)\)
\(\Leftrightarrow18\left(x^3+1\right)\ge\left(x+2\right)\left(7x^2+5\right)\)
\(\Leftrightarrow\left(x-1\right)^2\left(11x+8\right)\ge0\)(luôn đúng với x>0)
Dấu "=" xảy ra khi x = 1
Áp dụng công thức trên ta có:
Cho x lần lượt là \(\frac{a}{b};\frac{b}{c};\frac{c}{a}\)
\(\Leftrightarrow\frac{a^3+b^3}{a+2b}\ge\frac{7a^2}{18}+\frac{5b^2}{18};\frac{b^3+c^3}{a+2b}\ge\frac{7b^2}{18}+\frac{5c^2}{18};\frac{c^3+a^3}{a+2b}\ge\frac{7c^2}{18}+\frac{5a^2}{18}\)
Từ đẳng thức trên suy ra \(A\ge\frac{12+\left(a^2+b^2+c^2\right)}{18}=2\)
Vậy MinA=2 khi a=b=c=1
Cần cm: \(\frac{a^3+b^3}{a+2b}\ge\frac{7}{18}a^2+\frac{5}{18}b^2\)
bđt \(\Leftrightarrow\)\(11a^3+8b^3-14a^2b-5ab^2\ge0\)\(\Leftrightarrow\)\(\left(a-b\right)^2\left(11a+8b\right)\ge0\) đúng với a,b>0
\(A\ge\frac{2}{3}\left(a^2+b^2+c^2\right)=2\)
Dấu "=" xảy ra khi a=b=c=1
\(\frac{a^3}{b+2c}+\frac{b^3}{c+2a}+\frac{c^3}{a+2b}\)
\(=\frac{a^4}{ab+2ca}+\frac{b^4}{bc+2ab}+\frac{c^4}{ca+2bc}\)
\(\ge\frac{\left(a^2+b^2+c^2\right)^2}{3\left(ab+bc+ca\right)}\ge\frac{\left(a^2+b^2+c^2\right)\left(ab+bc+ca\right)}{3\left(ab+bc+ca\right)}=\frac{1}{3}\)
Theo đánh giá của bđt AM-GM ta có \(a^2+1\ge2\sqrt{a^2.1}=2a\Rightarrow a^2+2b+3\ge2a+2b+2\)
Suy ra \(\frac{a}{a^2+2b+3}\le\frac{a}{2a+2b+1}=\frac{a}{2\left(a+b+1\right)}=\frac{1}{2}.\frac{a}{a+b+1}\)
Chứng mình tương tự và cộng theo vế ta được \(LHS\le\frac{1}{2}.\frac{a}{a+b+1}+\frac{1}{2}.\frac{b}{b+c+1}+\frac{1}{2}.\frac{c}{c+a+1}\)
\(=\frac{1}{2}\left(\frac{a}{a+b+1}+\frac{b}{b+c+1}+\frac{c}{c+a+1}\right)=\frac{1}{2}\left(3-\frac{b+1}{a+b+1}-\frac{c+1}{b+c+1}-\frac{a+1}{c+a+1}\right)\)
\(=\frac{1}{2}\left[3-\frac{\left(b+1\right)^2}{\left(b+1\right)\left(a+b+1\right)}-\frac{\left(c+1\right)^2}{\left(c+1\right)\left(b+c+1\right)}-\frac{\left(a+1\right)^2}{\left(a+1\right)\left(c+a+1\right)}\right]\)
\(\le\frac{1}{2}\left[3-\frac{\left(a+b+c+3\right)^2}{\left(b+1\right)\left(a+b+1\right)+\left(c+1\right)\left(b+c+1\right)+\left(a+1\right)\left(c+a+1\right)}\right]\)
\(=\frac{1}{2}\left[3-\frac{\left(a+b+c+3\right)^2}{ab+b^2+b+a+b+1+cb+c^2+c+b+c+1+ca+a^2+a+c+a+1}\right]\)
\(=\frac{1}{2}\left[3-\frac{\left(a+b+c+3\right)^2}{a^2+b^2+c^2+ab+bc+ca+3\left(a+b+c\right)+3}\right]\)
\(=\frac{1}{2}\left[3-\frac{2\left(a+b+c+3\right)^2}{\left(a^2+b^2+c^2+2ab+2bc+2ca\right)+6\left(a+b+c\right)+9}\right]\)
\(=\frac{1}{2}\left[3-\frac{2\left(a+b+c+3\right)^2}{\left(a+b+c\right)^2+2.3.\left(a+b+c\right)+3^2}\right]=\frac{1}{2}\left[3-\frac{2\left(a+b+c+3\right)^2}{\left(a+b+c+3\right)^2}\right]\)
\(=\frac{1}{2}\left[3-2\right]=\frac{1}{2}\)
Ta có \(\frac{a}{a^2+2b+3}=\frac{a}{a^2+1+2\left(b+1\right)}\le\frac{a}{2a+2\left(b+1\right)}=\frac{a}{2\left(a+b+1\right)}\)
Chứng minh tương tự \(\hept{\begin{cases}\frac{b}{b^2+2c+3}\le\frac{b}{2\left(b+c+1\right)}\\\frac{c}{c^2+2a+3}\le\frac{c}{2\left(a+c+1\right)}\end{cases}}\)
Cộng 3 vế của 3 bđt lại ta được
\(VT\le\frac{1}{2}\left(\frac{a}{a+b+1}+\frac{b}{b+c+1}+\frac{c}{c+a+1}\right)\)
Để bài toán được chứng minh thì ta cần \(\frac{a}{a+b+1}+\frac{b}{b+c+1}+\frac{c}{c+a+1}\le1\)
\(\Leftrightarrow1-\frac{a}{a+b+1}+1-\frac{b}{b+c+1}+1-\frac{c}{c+a+1}\ge2\)
\(\Leftrightarrow A=\frac{b+1}{a+b+1}+\frac{c+1}{b+c+1}+\frac{a+1}{c+a+1}\ge2\)
Ta có \(A=\frac{b+1}{a+b+1}+\frac{c+1}{b+c+1}+\frac{a+1}{c+a+1}\)
\(=\frac{\left(b+1\right)^2}{\left(b+1\right)\left(a+b+1\right)}+\frac{\left(c+1\right)^2}{\left(c+1\right)\left(b+c+1\right)}+\frac{\left(a+1\right)^2}{\left(a+1\right)\left(c+a+1\right)}\)
Áp dụng bđt quen thuộc \(\frac{m^2}{x}+\frac{n^2}{y}+\frac{p^2}{z}\ge\frac{\left(m+n+p\right)^2}{x+y+z}\)(quen thuộc) ta được
\(A\ge\frac{\left(a+b+c+3\right)^2}{\left(b+1\right)\left(a+b+1\right)+\left(c+1\right)\left(b+c+1\right)+\left(a+1\right)\left(c+a+1\right)}\)
\(=\frac{\left(a+b+c+3\right)^2}{a^2+b^2+c^2+ab+bc+ca+3\left(a+b+c\right)+3}\)
\(=\frac{2\left(a+b+c+3\right)^2}{2\left(a^2+b^2+c^2+ab+bc+ca+3\left(a+b+c\right)+3\right)}\)
\(=\frac{2\left(a+b+c+3\right)^2}{a^2+b^2+c^2+\left(a^2+b^2+c^2\right)+2\left(ab+bc+ca\right)+6\left(a+b+c\right)+6}\)
\(=\frac{2\left(a+b+c+3\right)^2}{a^2+b^2+c^2+2\left(ab+bc+ca\right)+6\left(a+b+c\right)+9}\)
\(=\frac{2\left(a+b+c+3\right)^2}{\left(a+b+c+3\right)^2}=2\)(DDpcm)
Dấu "=" xảy ra tại a= b = c =1
bn có thể ghi cho mk cái bđt đấy đc ko
#mã mã#
Bạn tham khảo lời giải tại link sau:
Câu hỏi của Ngo Hiệu - Toán lớp 9 | Học trực tuyến
Xét vế trái \(\frac{2.a^2}{a+b^2}+\frac{2.b^2}{b+c^2}+\frac{2c^2}{c+a^2}=\frac{2a^4}{a^3+a^2.b^2}+\frac{2.b^4}{b^3+c^2.b^2}+\frac{2c^4}{c^3+a^2.c^2}\)
\(\ge2.\frac{\left(a^2+b^2+c^2\right)^2}{a^3+b^3+c^3+a^2.b^2+b^2.c^2+a^2.c^2}\)( Bất đẳng thức Svac-xơ )
Ta có \(a^4+a^2\ge2.a^3\Rightarrow a^3\le\frac{a^4+a^2}{2}\)
Tương tự \(b^3\le\frac{b^4+b^2}{2}\)
\(c^3\le\frac{c^4+c^2}{2}\)
Do đó \(2.\frac{\left(a^2+b^2+c^2\right)^2}{a^3+b^3+c^3+a^2.b^2+b^2.c^2+a^2.c^2}\ge\frac{2.\left(a^2+b^2+c^2\right)^2}{\frac{a^4+a^2}{2}+\frac{b^4+b^2}{2}+\frac{c^4+c^2}{2}+a^2.b^2+b^2.c^2+a^2.c^2}\)
\(=\frac{2.\left(a^2+b^2+c^2\right)^2}{\frac{a^4+b^4+c^4+2a^2c^2+2b^2c^2+2a^2b^2+a^2+b^2+c^2}{2}}\)
\(=\frac{4.\left(a^2+b^2+c^2\right)^2}{\left(a^2+b^2+c^2\right)^2+a^2+b^2+c^2}\)
\(=\frac{4.3^2}{3^2+3}=3=a^2+b^2+c^2\ge a+b+c\)
Vậy \(\frac{2.a^2}{a+b^2}+\frac{2.b^2}{b+c^2}+\frac{2c^2}{c+a^2}\ge a+b+c\)với \(a^2+b^2+c^2=3\)
Ta có phép biến đổi sau : \(\frac{a^2}{a+b^2}=a-\frac{ab^2}{a+b^2}\ge a-\frac{\sqrt{ab^2}}{2}=a-\frac{\sqrt{a.b.b}}{2}\ge a-\frac{ab+b}{4}\)
Bằng cách chứng minh tương tự : \(\frac{b^2}{b+c^2}\ge b-\frac{bc+c}{4}\); \(\frac{c^2}{c+a^2}\ge c-\frac{ca+a}{4}\)
Cộng theo vế các bất đẳng thức cùng chiều : \(\frac{a^2}{a+b^2}+\frac{b^2}{b+c^2}+\frac{c^2}{c+a^2}\ge a+b+c-\frac{ab+bc+ca+a+b+c}{4}\)
\(< =>\frac{2a^2}{a+b^2}+\frac{2b^2}{b+c^2}+\frac{2c^2}{c+a^2}\ge2\left(a+b+c-\frac{ab+bc+ca+a+b+c}{4}\right)\)
Đến đây ta cần chỉ ra được : \(2\left(a+b+c-\frac{ab+bc+ca+a+b+c}{4}\right)\ge a+b+c\)(*)
Mặt khác : \(3\left(ab+bc+ca\right)\le\left(a+b+c\right)^2\le\left(a+b+c\right)\sqrt{3\left(a^2+b^2+c^2\right)}=3\left(a+b+c\right)\)
\(< =>ab+bc+ca\le a+b+c\)
Khi đó ta suy ra được : \(2\left(a+b+c-\frac{ab+bc+ca+a+b+c}{4}\right)\ge2\left(a+b+c-\frac{2\left(a+b+c\right)}{4}\right)\)
\(=2\left(a+b+c-\frac{a+b+c}{2}\right)=2\left(\frac{2a+2b+2c-a-b-c}{2}\right)=2.\frac{a+b+c}{2}=a+b+c\)
Vậy bài toán đã được hoàn tất phép chứng minh . Đẳng thức xảy ra khi và chỉ khi \(a=b=c=1\)
\(\frac{a^2}{a+b^2}=a-\frac{ab^2}{a+b^2}\ge a-\frac{\sqrt{ab^2}}{2}=a-\frac{\sqrt{ab.b}}{2}\ge a-\frac{ab+b}{4}\)
CMTT: \(VT\ge2.\left(a+b+c-\frac{a+b+c+ab+cb+ca}{4}\right)\)
Ta lại có \(3\left(ab+bc+ca\right)\le\left(a+b+c\right)^2\le\left(a+b+c\right)\sqrt{3\left(a^2+b^2+c^2\right)}=3\left(a+b+c\right)\)
=> \(ab+bc+ca\le a+b+c\)
=> \(VT\ge2\left(a+b+c-\frac{a+b+c}{2}\right)=a+b+c\left(dpcm\right)\)
Dấu bằng khi a=b=c=1
Mình có một cách khác. Các bạn xem nhé!
Đặt a = b = c . Ta có:
\(\frac{2a^2}{a+b^2}+\frac{2b^2}{b+c^2}+\frac{2c^2}{c+a^2}=\frac{2a^2}{a+a^2}+\frac{2a^2}{a+a^2}+\frac{2a^2}{a+a^2}=3\left(\frac{2a^2}{a^3}\right)\ge a^3\)(Do a = b = c nên ta thế a,b,c = a)
\(\Leftrightarrow\frac{2a^2}{a^3}+\frac{2b^2}{b^3}+\frac{2c^2}{c^3}=\frac{2a^2+2b^2+2c^2}{a^3+b^3+c^3}=\frac{6\left(a^2+b^2+c^2\right)}{\left(a^2.b^2.c^2\right):\left(a+b+c\right)}=\frac{6}{2}=3\)
\(\Rightarrow\frac{2a^2}{a+b^2}+\frac{2b^2}{b+c^2}+\frac{2c^2}{c+a^2}>a+b+c^{\left(đpcm\right)}\)
Dấu = xảy ra khi a =b = c = 1
Lời giải:
Áp dụng BĐT Cauchy-Schwarz và AM-GM:
\(A=\frac{a^4}{a^2+2ab}+\frac{b^4}{ab+2b^2}+\frac{b^4}{b^2+2bc}+\frac{c^4}{bc+2c^2}+\frac{c^4}{c^2+2ac}+\frac{a^4}{ca+2a^2}\)
\(\geq \frac{(a^2+b^2+b^2+c^2+c^2+a^2)^2}{3(a^2+b^2+c^2+ab+bc+ac)}=\frac{4(a^2+b^2+c^2)^2}{3(a^2+b^2+c^2+ab+bc+ac)}\geq \frac{4(a^2+b^2+c^2)^2}{3(a^2+b^2+c^2+a^2+b^2+c^2)}\)
hay \(A\geq \frac{2}{3}(a^2+b^2+c^2)=2\)
Vậy $A_{\min}=2$. Dấu "=" xảy ra khi $a=b=c=1$
Em cảm ơn ak !!!