K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 9 2016

Ta có :

\(\left(a+b+c\right)^3-a^3-b^3-c^3\)

\(=\left[\left(a+b\right)+c\right]^3-c^3-\left(a^3+b^3\right)\)

\(=\left(a+b\right)^3+3\left(a+b\right)^2c+3\left(a+b\right)c^2+c^3-c^3-\left(a+b\right)\left(a^2+b^2-ab\right)\)

\(=\left(a+b\right)\left[\left(a+b\right)^2+3\left(a+b\right)c+3c^2-\left(a^2+b^2-ab\right)\right]\)

\(=\left(a+b\right)\left[a^2+b^2+2ab+3ac+3bc+3c^2-a^2-b^2+ab\right]\)

\(=\left(a+b\right)\left[3ab+3ac+3bc+3c^2\right]\)

\(=3\left(a+b\right)\left[a\left(b+c\right)+c\left(b+c\right)\right]\)

\(=3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

\(\Rightarrow\left(a+b+c\right)^3=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

Vậy ...

1 tháng 9 2016

trả lời lại đi bạn ơi

21 tháng 3 2016

Ta có (a+b+c)2= a2+b2+c2+2ab+2bc+2ca>a2+b2+c2

=> đpcm

Mình chỉ hướng dẫn thôi bạn tự làm nhá

11 tháng 4 2016

Ta có: (a-1)2+(b-1)2+(c-1)2>0

<=>a2-2a+1+b2-2b+1+c2-2c+1>0

<=>a2+b2+c2+3-2(a+b+c)>0

<=>a2+b2+c2+3>2(a+b+c)

chúc bn học giỏi, đừng quên k mình nhé!!!

30 tháng 6 2016

Xét vế trái:

\(\left(a+b+c\right)^3-a^3-b^3-c^3\)

\(=\left(a+b\right)^3+3a^2bc+3abc^2+c^3-a^3-b^3-c^3\)

\(=a^3+b^3+3ab\left(a+b\right)+3\left(a+b\right)^2c+3\left(a+b\right)c^2-a^3-b^3\)

\(=3ab\left(a+b\right)+3\left(a+b\right)^2c+3\left(a+b\right)c^2\)

\(=3\left(a+b\right)\left(ab+ac+bc+c^2\right)\)

\(=3\left(a+b\right)\left[a\left(b+c\right)+c\left(b+c\right)\right]\)

\(=3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

Vậy: \(\left(a+b+c\right)^3-a^3-b^3-c^3=3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

(Nhớ k cho mình với nhá!)

14 tháng 4 2020

Mình có 3 HĐT nâng cao cho bạn áp dụng vào bài toán :

\(\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ac\)

\(\left(a+b-c\right)^2=a^2+b^2+c^2+2ab-2bc-2ac\)

\(\left(a-b+c\right)^2=a^2+b^2+c^2-2ab-2bc+2ac\)

4 tháng 1 2018

cho mình sữa lại là  - c2017 / a2017 chứ ko phãi là c2017  - a2017 nha

23 tháng 9 2020

a) \(\left(x+a\right)\left(x+b\right)\left(x+c\right)\)

\(=\left[x^2+\left(a+b\right)x+ab\right]\left(x+c\right)\)

\(=x^3+\left(a+b+c\right)x^2+\left(ab+bc+ca\right)x+abc\)

b) \(a^3+b^3+c^3-3abc\)

\(=\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\)

\(=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ca-bc+c^2-3ab\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)

c) \(a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)\)

\(=a^2\left(b-c\right)+b^2c-ab^2+c^2a-bc^2\)

\(=a^2\left(b-c\right)+bc\left(b-c\right)-a\left(b-c\right)\left(b+c\right)\)

\(=\left(b-c\right)\left(a^2+bc-ab-ca\right)\)

\(=\left(a-b\right)\left(b-c\right)\left(c-a\right)\)

23 tháng 9 2020

Nhầm đoạn cuối là \(=\left(a-b\right)\left(b-c\right)\left(a-c\right)\)