Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Với \(x\ge0;y\ge0\). Ta có:
\(\frac{x+y}{2}\ge\sqrt{xy}\)( Bất đẳng thức Cauchy cho 2 số không âm)
Và như vậy:
\(A=\left(\left|\sqrt{xy}+\frac{x+y}{2}\right|-\left|x\right|\right)+\left(\left|\sqrt{xy}-\frac{x+y}{2}\right|-\left|y\right|\right)\)
\(=\left(\sqrt{xy}+\frac{x+y}{2}-x\right)+\left(\frac{x+y}{2}-\sqrt{xy}-y\right)=0\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(P=xy\left(x-2\right)\left(y+6\right)+12x^2-24x+3y^2+18y+36\)
\(=\left(x^2-2x\right)\left(y^2+6y\right)+\left(12x^2+24x+12\right)+\left(3y^2+18y+9\right)+15\)
\(=\left[\left(x-1\right)^2-1\right]\left[\left(y+3\right)^2-9\right]+12\left(x-1\right)^2+3\left(y+3\right)^2+15\)
\(=3\left(x-1\right)^2+2\left(y+3\right)^2+15\)
Do đó \(P\ge15\)
\(\Rightarrow P>0\)
Suy ra P luôn dương
![](https://rs.olm.vn/images/avt/0.png?1311)
mk nhớ lm bài tương tự thế này r` bn chịu khó mở ra xem lại ở đây olm.vn/?g=page.display.showtrack&id=424601&limit=260, ấn vào chữ Trang tiếp theo để tìm thêm nhé