\(\frac{a^2+b^2}{b^2+a^2}=\frac{c}{b}\)với điều kiện \(...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 9 2015

từ a^2=b.c ta có a/b=c/a

=>a2+c2/b2+a2

lại có a2+b2/b2+a2=>a/b=b/a=>a2=b2=b.c=>b=c=>c/b=1

cũng từ trên ta có a2+b2/b2+a2=1=c/b(đpcm)

 

20 tháng 12 2019

Ta có : \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=\frac{x+y+z}{a+b+c}=x+y+z\) vì a + b + c = 1

Do đó \((x+y+z)^2=\frac{x^2}{a^2}=\frac{y^2}{b^2}=\frac{z^2}{c^2}=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=x^2+y^2+z^2\)vì \(a^2+b^2+c^2=1\)

Vậy : 

22 tháng 9 2018

Từ \(\frac{a}{b}=\frac{c}{d}\rightarrow\frac{a}{c}=\frac{b}{d}\rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}\)

\(\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{5a^2}{5c^2}=\frac{7b^2}{7d^2}\)

Áp dụng t/c DTSBN :
 \(\frac{a^2}{c^2}=\frac{5a^2}{5c^2}=\frac{7b^2}{7d^2}=\frac{5a^2-7b^2}{5c^2-7d^2}\)

Vậy \(\frac{a^2}{c^2}=\frac{5a^2-7b^2}{5c^2-7d^2}\)

23 tháng 9 2018

Ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Leftrightarrow\frac{a^2}{c^2}=\frac{b^2}{c^2}\) (theo tính chất tỉ lệ thức)

Áp dụng tính chất cơ bản của phân số: \(\frac{a^2}{c^2}=\frac{5a^2}{5c^2}=\frac{b^2}{d^2}=\frac{7b^2}{7d^2}\) (*)

Từ (*) theo t/c tỉ dãy số bằng nhau. Ta có: \(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2-b^2}{c^2-d^2}=\frac{5a^2-7b^2}{5c^2-7a^2}^{\left(đpcm\right)}\)

30 tháng 10 2017

Ta có: \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)

\(\Leftrightarrow\left(a^2+b^2\right)\cdot cd=\left(c^2+d^2\right)\cdot ab\)

\(\Rightarrow a^2\cdot cd+b^2\cdot cd=c^2\cdot ab+d^2\cdot ab\)

\(\Rightarrow a^2\cdot cd+b^2\cdot cd-c^2\cdot ab-d^2\cdot ab=0\)

\(\Rightarrow\left(a^2\cdot cd-c^2\cdot ab\right)+\left(b^2\cdot cd-d^2\cdot ab\right)=0\)

\(\Rightarrow ac\cdot\left(ad-bc\right)+bd\cdot\left(bc-ad\right)=0\)

\(\Rightarrow ac\cdot\left(ad-bc\right)-bd\cdot\left(ad-bc\right)=0\)

\(\Rightarrow\left(ac-bd\right)\cdot\left(ad-bc\right)=0\)

Tự làm tiếp nhé.......

30 tháng 10 2017

bạn ơi còn cách nào ko

11 tháng 12 2018

Ta có:

\(b^2=ac\Rightarrow\frac{a}{b}=\frac{b}{c}\)

\(c^2=bd\Rightarrow\frac{b}{c}=\frac{c}{d}\)

\(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}\)

11 tháng 12 2018

Ta có : \(b^2=ac\) 

\(\Rightarrow\frac{a}{b}=\frac{b}{c}\) (1) 

\(c^2=bd\) 

\(\Rightarrow\frac{b}{c}=\frac{c}{d}\) (2)

Từ (1) và (2) suy ra : \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\) 

\(\Rightarrow\frac{a}{b}.\frac{a}{b}.\frac{a}{b}=\frac{a}{b}.\frac{b}{c}.\frac{c}{d}\) , \(\frac{b}{c}.\frac{b}{c}.\frac{b}{c}=\frac{a}{b}.\frac{b}{c}.\frac{c}{d}\) và \(\frac{c}{d}.\frac{c}{d}.\frac{c}{d}=\frac{a}{b}.\frac{b}{c}.\frac{c}{d}\)

\(\Rightarrow\frac{a^3}{b^3}=\frac{a}{d}\) , \(\frac{b^3}{c^3}=\frac{a}{d}\) và \(\frac{c^3}{d^3}=\frac{a}{d}\) 

\(\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a}{d}\) 

\(\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a}{d}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\) 

Vậy \(\frac{a}{d}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)

21 tháng 10 2016

2) Áp dụng tính chất của dãy tỉ số = nhau ta có:

\(\frac{ab}{b}=\frac{bc}{c}=\frac{ca}{a}=\frac{ab+bc+ca}{b+c+a}=\frac{\left(10a+b\right)+\left(10b+c\right)+\left(10c+a\right)}{a+b+c}=\frac{11.\left(a+b+c\right)}{a+b+c}=11\)

\(\Rightarrow\begin{cases}ab=11b\\bc=11c\\ca=11a\end{cases}\)\(\Rightarrow\begin{cases}10a+b=11b\\10b+c=11c\\10c+a=11a\end{cases}\)\(\Rightarrow\begin{cases}10a=10b\\10b=10c\\10c=10a\end{cases}\)\(\Rightarrow10a=10b=10c\)

=> a = b = c (đpcm)

 

 

 

 

 

21 tháng 10 2016

soyeon_Tiểubàng giải bạn giúp bn ấy ik trong đó có câu 2 mk cần ó

28 tháng 7 2016

bạn áp dụng dãy tỉ số bằng nhau là xong

28 tháng 7 2016

1) \(\frac{a}{b}=\frac{c}{d}=\frac{a-c}{b-d}\)

-->\(\frac{a}{b}=\frac{a-c}{b-d}\left(đpcm\right)\)

2) ta có \(\frac{a}{b}=\frac{c}{d}\)

đặt a=kb và c=kd

\(\frac{a+b}{a-b}=\frac{kb+b}{kb-b}=\frac{b\left(k+1\right)}{b\left(k-1\right)}=\frac{k+1}{k-1}\left(1\right)\)

\(\frac{c+d}{c-d}=\frac{kd+d}{kd-d}=\frac{d\left(k+1\right)}{d\left(k-1\right)}=\frac{k+1}{k-1}\left(2\right)\)

từ (1) và (2) --> \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\left(đpcm\right)\)