K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NM
11 tháng 12 2020

đặt \(A=\frac{1}{2}.\frac{3}{4}..\frac{99}{100}\)

ta có: \(A^2=\frac{1}{2}.\frac{1}{2}.\frac{3}{4}.\frac{3}{4}...\frac{99}{100}.\frac{99}{100}\)

\(\le\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}...\frac{99}{100}.\frac{100}{101}=\frac{1}{101}< \frac{1}{100}\)

\(A^2< \frac{1}{100}\Rightarrow A< \frac{1}{10}\)

18 tháng 1 2020

+ \(2\cdot\frac{1}{\sqrt{n}+\sqrt{n+1}}< \frac{2}{\sqrt{n}+\sqrt{n}}< 2\cdot\frac{1}{\sqrt{n-1}+\sqrt{n}}\) \(\Rightarrow2\left(\sqrt{n+1}-\sqrt{n}\right)< \frac{1}{\sqrt{n}}< 2\left(\sqrt{n}-\sqrt{n-1}\right)\)

\(\Rightarrow A>2\left(\sqrt{3}-\sqrt{2}+\sqrt{4}-\sqrt{3}+...+\sqrt{101}-\sqrt{100}\right)\)

\(\Rightarrow A>2\left(\sqrt{101}-\sqrt{2}\right)>17\)

+ \(A< 2\left(\sqrt{2}-1+\sqrt{3}-\sqrt{2}+...+\sqrt{100}-\sqrt{99}\right)\Rightarrow A< 2\left(\sqrt{100}-1\right)=18\)

17 tháng 10 2019

không biết bài này giải thế nào 

Y
16 tháng 6 2019

+ \(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{\left(n+1\right)-n}{\sqrt{n\left(n+1\right)}\left(\sqrt{n+1}+\sqrt{n}\right)}\)

\(=\frac{\left(\sqrt{n+1}-\sqrt{n}\right)\left(\sqrt{n+1}+\sqrt{n}\right)}{\sqrt{n\left(n+1\right)}\left(\sqrt{n+1}+\sqrt{n}\right)}\)

\(=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n\left(n+1\right)}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)

Do đó : \(A=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{99}}-\frac{1}{\sqrt{100}}\)

\(=1-\frac{1}{10}=\frac{9}{10}\)

5 tháng 7 2019

ko hiểu gì

NV
7 tháng 10 2019

\(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)^2-n^2\left(n+1\right)}=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)}=\frac{\sqrt{n}}{n}+\frac{\sqrt{n+1}}{n+1}\)

\(\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+...+\frac{1}{100\sqrt{99}+99\sqrt{100}}\)

\(=\frac{\sqrt{1}}{1}-\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2}-\frac{\sqrt{3}}{3}+...+\frac{\sqrt{99}}{99}-\frac{\sqrt{100}}{100}\)

\(=1-\frac{\sqrt{100}}{100}=\frac{9}{10}< 1\)

12 tháng 8 2019

Câu 1,2,3 Ez quá rồi :3

Câu 4:

Tổng quát:

\(\frac{1}{\sqrt{a}+\sqrt{a+1}}=\frac{\sqrt{a}-\sqrt{a+1}}{a-a-1}=\sqrt{a+1}-\sqrt{a}.\) Game là dễ :v

12 tháng 8 2019

Câu 5 ko khác câu 4 lắm :v

Câu 5: 

Tổng quát:

\(\frac{1}{\sqrt{a}-\sqrt{a+1}}=\frac{\sqrt{a}+\sqrt{a+1}}{a-a-1}=-\sqrt{a}-\sqrt{a+1}.\) Game là dễ :v