\(\frac{1}{10}.C^9_{100}=\frac{1}{100}.C^{10}_{101}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 4 2017

a) 1110 – 1 = (1 + 10)10 – 1 = (1 + C110 10 + C210102 + … +C910 109 + 1010) – 1

= 102 + C210102 +…+ C910 109 + 1010.

Tổng sau cùng chia hết cho 100 suy ra 1110 – 1 chia hết cho 100.

b) Ta có

101100 – 1 = (1 + 100)100 - 1

= (1 + C1100 100 + C2100 1002 + …+C99100 10099 + 100100) – 1.

= 1002 + C21001002 + …+ 10099 + 100100.

Tổng sau cùng chia hết cho 10 000 suy ra 101100 – 1 chia hết cho 10 000.

c) (1 + √10)100 = 1 + C1100 √10 + C2100 (√10)2 +…+ (√10)99 + (√10)100

(1 - √10)100 = 1 - C1100 √10 + C2100 (√10)2 -…- (√10)99 + (√10)100

√10[(1 + √10)100 – (1 - √10)100] = 2√10[C1100 √10 + C3100 (√10)3 +…+ . (√10)99]

= 2(C1100 10 + C3100 102 +…+ 1050)

Tổng sau cùng là một số nguyên, suy ra √10[(1 + √10)100 – (1 - √10)100] là một số nguyên.

23 tháng 5 2017

a) \(11^{10}-1=\left(10+1\right)^{10}-1\)\(=C^0_{10}10^{10}+C^1_{10}10^9+...+C^9_{10}10+C^{10}_{10}-1\)
\(=10^{10}+C^1_{10}10^9+...+C^8_{10}10^2+10.10\) chia hết cho 100.
b) \(\left(101\right)^{100}-1=\left(100+1\right)^{100}-1\)
\(=100^{100}+C_{100}^{99}100^{99}+....+C^1_{100}100+C_{100}^{100}100^0-1\)
\(=100^{100}+C_{100}^{99}100^{99}+....+C^2_{100}100^2+100.100+1-1\)
\(=100^{100}+C_{100}^{99}100^{99}+....+C^2_{100}100^2+10000\) chia hết cho 10000.



28 tháng 7 2019

Áp dụng bất đẳng thức Cô-si liên tục 2 lần ta có :

\(\frac{1}{a+b-c}+\frac{1}{b+c-a}\ge\frac{2}{\sqrt{\left(a+b-c\right)\left(b+c-a\right)}}\ge\frac{2}{\frac{\left(a+b-c\right)+\left(b+c-a\right)}{2}}=\frac{2}{\frac{2b}{2}}=\frac{2}{b}\)

Chứng minh tương tự ta cũng có :

\(\frac{1}{a+b-c}+\frac{1}{c+a-b}\ge\frac{2}{a};\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{2}{c}\)

Cộng theo vế của 3 bất đẳng thức trên ta được :

\(2\cdot\left(\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{c+a-b}\right)\ge2\cdot\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

Hay ta có đpcm

Dấu "=" xảy ra \(\Leftrightarrow a=b=c\) hay tam giác ABC đều

NV
24 tháng 7 2020

c/

ĐKXĐ: ...

Đặt \(cosx+\frac{2}{cosx}=a\Rightarrow cos^2x+\frac{4}{cos^2x}=a^2-4\)

Pt trở thành:

\(9a+2\left(a^2-4\right)=1\)

\(\Leftrightarrow2a^2+9a-9=0\)

Pt này nghiệm xấu quá bạn :(

d/ĐKXĐ: ...

Đặt \(\frac{2}{cosx}-cosx=a\Rightarrow cos^2x+\frac{4}{cos^2x}=a^2+4\)

Pt trở thành:

\(2\left(a^2+4\right)+9a-1=0\)

\(\Leftrightarrow2a^2+9a+7=0\Rightarrow\left[{}\begin{matrix}a=-1\\a=-\frac{7}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\frac{2}{cosx}-cosx=-1\\\frac{2}{cosx}-cosx=-\frac{7}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}-cos^2x+cosx+2=0\\-cos^2x+\frac{7}{2}cosx+2=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}cosx=-1\\cosx=2\left(l\right)\\cosx=4\left(l\right)\\cosx=-\frac{1}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\pi+k2\pi\\x=\pm\frac{2\pi}{3}+k2\pi\end{matrix}\right.\)

NV
24 tháng 7 2020

b/

ĐKXĐ: ...

Đặt \(sinx+\frac{1}{sinx}=a\Rightarrow sin^2x+\frac{1}{sin^2x}=a^2-2\)

Pt trở thành:

\(4\left(a^2-2\right)+4a=7\)

\(\Leftrightarrow4a^2+4a-15=0\Rightarrow\left[{}\begin{matrix}a=\frac{3}{2}\\a=-\frac{5}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}sinx+\frac{1}{sinx}=\frac{3}{2}\\sinx+\frac{1}{sinx}=-\frac{5}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}sin^2x-\frac{3}{2}sinx+1=0\left(vn\right)\\sin^2x+\frac{5}{2}sinx+1=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}sinx=-\frac{1}{2}\\sinx=-2\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-\frac{\pi}{6}+k2\pi\\x=\frac{7\pi}{6}+k2\pi\end{matrix}\right.\)

26 tháng 9 2020

Chưa học quy nạp thì sao bạn

26 tháng 9 2020

Phạm Dương Ngọc Nhi thế thì bạn học pp này đi. Cái pp này giúp cm nhiều bài một cách dễ dàng

NV
9 tháng 7 2020

a/ \(cos\left(2x+\frac{\pi}{6}\right)=0\)

\(\Leftrightarrow2x+\frac{\pi}{6}=\frac{\pi}{2}+k\pi\)

\(\Rightarrow x=\frac{\pi}{6}+\frac{k\pi}{2}\)

b/ \(cos\left(4x-\frac{\pi}{3}\right)=1\)

\(\Leftrightarrow4x-\frac{\pi}{3}=k2\pi\)

\(\Rightarrow x=\frac{\pi}{12}+\frac{k\pi}{2}\)

c/ \(cos\left(2x+25^0\right)=-\frac{\sqrt{2}}{2}=cos135^0\)

\(\Rightarrow\left[{}\begin{matrix}2x+25^0=135^0+k360^0\\2x+25^0=-135^0+k360^0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=55^0+k180^0\\x=-80^0+k180^0\end{matrix}\right.\)

d/ \(cot\left(3x+10^0\right)=\frac{\sqrt{3}}{3}=cot60^0\)

\(\Rightarrow3x+10^0=60^0+k180^0\)

\(\Rightarrow x=\frac{50^0}{3}+k60^0\)

NV
18 tháng 2 2020

\(u_n-1=\frac{2^n-5^n}{2^n+5^n}-1=\frac{-2.5^n}{2^n+5^n}\Rightarrow\frac{1}{u_n-1}=\frac{2^n+5^n}{-2.5^n}=-\frac{1}{2}\left(\left(\frac{2}{5}\right)^n+1\right)\)

\(\Rightarrow S_{10}=-\frac{1}{2}\left[\frac{2}{5}+\left(\frac{2}{5}\right)^2+...+\left(\frac{2}{5}\right)^{10}+10\right]\)

\(=-\frac{1}{2}\left[\frac{2}{5}.\frac{1-\left(\frac{2}{5}\right)^{10}}{1-\frac{2}{5}}+10\right]=\frac{1}{3}\left(\frac{2}{5}\right)^{10}-\frac{16}{3}\)