K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 5



Giải chi tiết:

Bước 1: Xác định vị trí các điểm P, I, K, Q
Giả thiết:

  • P là trung điểm của AB.
  • Q là trung điểm của AC.
  • I và K lần lượt là trung điểm của BC và CA.

Bước 2: Tính chất hình học

  • Đường trung bình PQ của tam giác ABC song song với BC và có độ dài bằng \(\frac{1}{2} B C\).
  • Tứ giác PIKQ là hình bình hành (do PQ // IK và PI // QK).

Bước 3: Tính diện tích PIKQ

  • Diện tích hình bình hành PIKQ = \(\frac{1}{2} \times \text{Di}ệ\text{n}\&\text{nbsp};\text{t} \overset{ˊ}{\imath} \text{ch}\&\text{nbsp};\text{tam}\&\text{nbsp};\text{gi} \overset{ˊ}{\text{a}} \text{c}\&\text{nbsp};\text{ABC}\).
  • Giả sử tam giác ABC có diện tích \(S_{A B C}\), khi đó:
    \(S_{P I K Q} = \frac{1}{2} S_{A B C}\)

Ví dụ minh họa:
Cho tam giác ABC có diện tích \(20 \textrm{ } \text{cm}^{2}\).

  • Diện tích tứ giác PIKQ là:
    \(S_{P I K Q} = \frac{1}{2} \times 20 = 10 \textrm{ } \text{cm}^{2}\)

Kết luận:
Diện tích tứ giác PIKQ bằng một nửa diện tích tam giác ABC nếu các điểm P, I, K, Q là trung điểm của các cạnh134.

Công thức tổng quát:

\(S_{P I K Q} = \frac{1}{2} S_{A B C}\)

Đáp án:
Diện tích tứ giác PIKQ là \(\boxed{\frac{1}{2} S_{A B C}}\).

21 tháng 12 2019

tớ chẳng hiểu

27 tháng 9 2019

A B C D O

Theo bất đẳng thức tam giác ta có:

\(OA+OB>AB\)

\(OB+OC>BC\)

\(OC+OD>DC\)

\(OD+OA>AD\)

Cộng vế theo vế thì \(2\left(OA+OB+OC+OD\right)>AB+BC+CA+AD\)

\(\Rightarrow OA+OB+OC+OD>\frac{AB+BC+CA+AD}{2}\) ( 1 )

Theo bất đẳng thức tam giác ta có:

\(AB+BC>CA;BC+CD>BD;CD+DA>CA;DA+AB>BD\)

Cộng vế theo vế ta có:

\(2\left(AB+BC+CD+AD\right)>2\left(CA+BD\right)=2\left(AO+OC+OD+OB\right)\)

\(\Leftrightarrow AB+BC+CD+DA>OA+OB+OC+OD\) ( 2 )

Từ ( 1 ) ; ( 2 ) suy ra đpcm.

4 tháng 8 2016

a) OA+OB >AB ( bất đẳng thức tam giác)

    OD+OC >DC ( bất đẳng thức tam giác )

b) từ 2 đều ở câu a => AC +BD > AB +CD

4 tháng 8 2016

cảm ơn bạn!

11 tháng 8 2015

Kẻ IN, DM song song với BC

suy ra IN song song vs DM 

Tam giác EDM có Itrung điểm DE và IN song song vs DM

suy ra In là đương trung binh của tam giác EDM

suy ra N là trung điểm Em

ta có DM song song với BC suy ra DMCB là hình thang 

Mà góc ABC =ACB

nên DMCB là hình thang cân

suy ra  DB =MC

ta lại có DB=AE

suy ra MC =AE

suy ra AE+EN=CM+MN

vậy AN=NC

VẬY N là trung điểm AC

Tam giác ACK có N là trung điểm AC và IN song song với BC

suy ra IN là đường trung bình tam giác AKB 

suy ra I la trung điểm AK 

tứ giác ADKE có I là trung điểm DE và I trung điểm AK

nêm ADKE là hình bình hành vì có hai đường chéo cắt nhau tại trung điểm mỗi đường

 

23 tháng 1 2018

cũng được