K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét dãy số : 

a,2a,3a,4a,..,(p−1)a

TH1 :

Nếu tồn tại 2 số có cùng số dư khi chia cho p là m.a và n.a ( m < n , m và n là các hằng số )

thì m.a - n.a = ( m - n ) a ⋮ p .

dễ nhận thấy 0 < m - n < p nên a ⋮ p suy ra (a,p) = p ≠ 1 suy ra Vô lý ( Loại )

TH2 :

Khi lấy các số trong dãy trên chia cho p không có số nào có cùng số dư khi chia cho p .

Suy ra các số dư lần lượt là 1,2,3,4,... p-1 vì a không chia hết cho p .

Hay a.2a.3a...(p−1)a≡1.2.3.4...(p−1)(modp)

Hay ap−1.(p−1)!≡(p−1)!(modp)

Hay ap−1≡1(modp) 

Tiếc quá nhưng mà bn chép trên mạng rùi!