Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để chứng minh bất đẳng thức (a^2 + b^2 + c^2)[(a-b)^2 + (b-c)^2 + (c-a)^2] ≥ 9/2, ta sẽ sử dụng phương pháp chứng minh bất đẳng thức bằng phương pháp chứng minh định lý hình học.
Giả sử a, b, c là các số thực và (a, b, c) không phải là (0, 0, 0). Ta có thể viết lại bất đẳng thức trên dưới dạng:
(a^2 + b^2 + c^2)[(a-b)^2 + (b-c)^2 + (c-a)^2] - 9/2 ≥ 0
Mở rộng và rút gọn biểu thức ta có:
2a^4 + 2b^4 + 2c^4 + 4a^2b^2 + 4b^2c^2 + 4c^2a^2 - 2a^3b - 2ab^3 - 2b^3c - 2bc^3 - 2c^3a - 2ca^3 - 9/2 ≥ 0
Đặt x = a^2, y = b^2, z = c^2, ta có:
2x^2 + 2y^2 + 2z^2 + 4xy + 4yz + 4zx - 2x^(3/2)√y - 2x√y^(3/2) - 2y^(3/2)√z - 2yz^(3/2) - 2z^(3/2)√x - 2zx^(3/2) - 9/2 ≥ 0
Đặt t = √x, u = √y, v = √z, ta có:
2t^4 + 2u^4 + 2v^4 + 4t^2u^2 + 4u^2v^2 + 4v^2t^2 - 2t^3u - 2tu^3 - 2u^3v - 2uv^3 - 2v^3t - 2vt^3 - 9/2 ≥ 0
Nhận thấy rằng biểu thức trên có thể viết dưới dạng tổng của các bình phương:
(t^2 + u^2 + v^2 - tu - uv - vt)^2 + (t^2 - u^2)^2 + (u^2 - v^2)^2 + (v^2 - t^2)^2 ≥ 0
Vì mọi số thực bình phương đều không âm, nên bất đẳng thức trên luôn đúng. Từ đó, ta có chứng minh rằng (a^2 + b^2 + c^2)[(a-b)^2 + (b-c)^2 + (c-a)^2] ≥ 9/2.
\(A=\dfrac{\left(a-b\right)^2}{ab}+\dfrac{\left(b-c\right)^2}{bc}+\dfrac{\left(c-a\right)^2}{ca}\)
\(B=\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)
..................................
\(A=\dfrac{a^2+b^2-2ab}{ab}+\dfrac{b^2-2ab+c^2}{bc}+c^2+a^2-\dfrac{2ca}{ca}\)
\(A=\left(\dfrac{a}{b}+\dfrac{b}{a}-2\right)+\left(\dfrac{b}{c}+\dfrac{c}{b}-2\right)+\left(\dfrac{c}{a}+\dfrac{a}{c}-2\right)=\dfrac{\left(b+c\right)}{a}+\dfrac{a+c}{b}+\dfrac{a+b}{c}-6\)
\(A=\left[\dfrac{\left(b+c\right)}{a}+1\right]+\left[\dfrac{\left(a+c\right)}{b}+1\right]+\left[\dfrac{\left(a+b\right)}{c}+1\right]-9\)
\(A=\dfrac{\left(a+b+c\right)}{a}+\dfrac{\left(a+b+c\right)}{b}+\left[\dfrac{\left(a+b+c\right)}{c}\right]-9\)
\(A=\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)-9\)
Ket luan
\(A\ne B\) => đề sai--> hoặc mình công trừ sai
1.
Áp dụng BĐT Cauchy-Schwarz:
\(\dfrac{a}{2a+a+b+c}=\dfrac{a}{25}.\dfrac{\left(2+3\right)^2}{2a+a+b+c}\le\dfrac{a}{25}\left(\dfrac{2^2}{2a}+\dfrac{3^2}{a+b+c}\right)=\dfrac{2}{25}+\dfrac{9}{25}.\dfrac{a}{a+b+c}\)
Tương tự:
\(\dfrac{b}{3b+a+c}\le\dfrac{2}{25}+\dfrac{9}{25}.\dfrac{b}{a+b+c}\)
\(\dfrac{c}{a+b+3c}\le\dfrac{2}{25}+\dfrac{9}{25}.\dfrac{c}{a+b+c}\)
Cộng vế:
\(VT\le\dfrac{6}{25}+\dfrac{9}{25}.\dfrac{a+b+c}{a+b+c}=\dfrac{3}{5}\)
Dấu "=" xảy ra khi \(a=b=c\)
2.
Đặt \(\dfrac{x}{x-1}=a;\dfrac{y}{y-1}=b;\dfrac{z}{z-1}=c\)
Ta có: \(\dfrac{x}{x-1}=a\Rightarrow x=ax-a\Rightarrow a=x\left(a-1\right)\Rightarrow x=\dfrac{a}{a-1}\)
Tương tự ta có: \(y=\dfrac{b}{b-1}\) ; \(z=\dfrac{c}{c-1}\)
Biến đổi giả thiết:
\(xyz=1\Rightarrow\dfrac{abc}{\left(a-1\right)\left(b-1\right)\left(c-1\right)}=1\)
\(\Rightarrow abc=\left(a-1\right)\left(b-1\right)\left(c-1\right)\)
\(\Rightarrow ab+bc+ca=a+b+c-1\)
BĐT cần chứng minh trở thành:
\(a^2+b^2+c^2\ge1\)
\(\Leftrightarrow\left(a+b+c\right)^2-2\left(ab+bc+ca\right)\ge1\)
\(\Leftrightarrow\left(a+b+c\right)^2-2\left(a+b+c-1\right)\ge1\)
\(\Leftrightarrow\left(a+b+c-1\right)^2\ge0\) (luôn đúng)
Lời giải:
1.
\(\frac{a^3-4a^2-a+4}{a^3-7a^2+14a-8}=\frac{a^2(a-4)-(a-4)}{(a^3-8)-(7a^2-14a)}=\frac{(a-4)(a^2-1)}{(a-2)(a^2+2a+4)-7a(a-2)}\)
\(=\frac{(a-4)(a-1)(a+1)}{(a-2)(a^2-5a+4)}=\frac{(a-4)(a-1)(a+1)}{(a-2)(a-1)(a-4)}=\frac{a+1}{a-2}\)
2.
\(\frac{x^2y^2+1+(x^2-y)(1-y)}{x^2y^2+1+(x^2+y)(1+y)}=\frac{x^2y^2+1+x^2-x^2y-y+y^2}{x^2y^2+1+x^2+x^2y+y+y^2}\)
\(=\frac{(x^2y^2-x^2y+x^2)+(y^2-y+1)}{(x^2y^2+x^2y+x^2)+(y^2+y+1)}\)
\(=\frac{x^2(y^2-y+1)+(y^2-y+1)}{x^2(y^2+y+1)+(y^2+y+1)}=\frac{(x^2+1)(y^2-y+1)}{(x^2+1)(y^2+y+1)}=\frac{y^2-y+1}{y^2+y+1}\)
\(a^2+b^2+c^2\ge ab+bc+ca=2\)
Áp dụng BĐT C-S:
\(P\ge\dfrac{\left(a+b+c\right)^2}{3-\left(a^2+b^2+c^2\right)}=\dfrac{a^2+b^2+c^2+4}{3-\left(a^2+b^2+c^2\right)}\)
Đặt \(a^2+b^2+c^2=x\)
Ta cần c/m: \(\dfrac{x+4}{3-x}\ge6\Leftrightarrow x+4\ge18-6x\)
\(\Leftrightarrow x\ge2\) (đúng)
Dấu = xảy ra khi \(a=b=c=\pm\sqrt{\dfrac{2}{3}}\)
Lời giải
\(\left(a^2+\dfrac{1}{a^2}\right)\left(b^2+\dfrac{1}{b^2}\right)\left(c^2+\dfrac{1}{c^2}\right)\ge8\)
\(A=\left(a^2+\dfrac{1}{a^2}\right)\left(b^2+\dfrac{1}{b^2}\right)\left(c^2+\dfrac{1}{c^2}\right)\)
\(A=\left[\left(a^2+\dfrac{1}{a^2}-2\right)+2\right].\left[\left(a^2+\dfrac{1}{a^2}-2\right)+2\right].\left[\left(a^2+\dfrac{1}{a^2}-2\right)+2\right]\)
\(A=\left[\left(a-\dfrac{1}{a}\right)^2+2\right].\left[\left(a-\dfrac{1}{a}\right)^2+2\right].\left[\left(a-\dfrac{1}{a}\right)^2+2\right]\)Thừa nhận cần c/m câu khác: \(\left(x-\dfrac{1}{x}\right)^2\ge0\forall x\ne0\)
\(\Rightarrow A\ge\left[\left(0\right)+2\right].\left[\left(0\right)+2\right].\left[\left(0\right)+2\right]=8\)
\(\Rightarrow A\ge8\forall_{a,b,c\ne0}\)=> dpcm
Đẳng thức khi \(\left\{{}\begin{matrix}\left|a\right|=1\\\left|b\right|=1\\\left|c\right|=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=\pm1\\b=\pm1\\c=\pm1\end{matrix}\right.\) Không tin bạn thử a=b=c=-1<0 vào thử xem
Có một chút vần đề nha ĐK phải là a,b,c > 0 nhé
bài này ta sẽ chứng minh lần lượt \(a^2+\dfrac{1}{a^2};b^2+\dfrac{1}{b^2};c^2+\dfrac{1}{c^2}\)lớn hơn hoặc bằng 2
Ta sẽ giả sử
\(a^2+\dfrac{1}{a^2}\ge2\)(2)
\(\Leftrightarrow a^2-2+\dfrac{1}{a^2}\ge0\Leftrightarrow a^2-2a\times\dfrac{1}{a}+\dfrac{1}{a^2}\ge0\)
\(\Leftrightarrow\left(a-\dfrac{1}{a}\right)^2\ge0\)(luôn đúng) (1)
BĐT (2) đúng suy ra BĐT (1) đúng
Dấu '=' xảy ra khi và chỉ khi \(a=\dfrac{1}{a}\Leftrightarrow a^2=1\Leftrightarrow a=1\)(*)
CMTT ta có : \(b^2+\dfrac{1}{b^2}\ge2\) (=) b = 1 (**)
\(c^2+\dfrac{1}{c^2}\ge2\) (=) c = 1 (***)
Nhân vế theo vế của (*) , (**) , (***) ta được
\(\left(a^2+\dfrac{1}{a^2}\right).\left(b^2+\dfrac{1}{b^2}\right).\left(c^2+\dfrac{1}{c^2}\right)\ge2^3=8\)(đpcm)
Dấu "=" xảy ra khi và chỉ khi a = b = c = 1
\(VP=\dfrac{1}{2}\cdot\dfrac{a+2-a}{a\left(a+2\right)}=\dfrac{2}{2a\left(a+2\right)}=\dfrac{1}{a\left(a+2\right)}=VT\)