K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 12 2016

\(VP=\left(x+y+z\right)^2-x^2-y^2-z^2\)

\(=x^2+2xy+2xz+y^2+2yz+z^2-x^2-y^2-z^2\)

\(=2xy+2yz+2xz=2\left(xy+yz+xz\right)=VP\)

Suy ra điều phải chứng minh

 

 

10 tháng 8 2017

Hình như sai đề

11 tháng 8 2017

thế ề như nào bạn

22 tháng 9 2016

Có: \(\left(x+y+z\right)^2-x^2-y^2-z^2\) 

\(=x^2+y^2+z^2+2xy+2yz+2xz-x^2-y^2-z^2\)

\(=2xy+2yz+2xz\)

\(=2\left(xy+yz+xz\right)\)


 

22 tháng 9 2016

\(\left[\left(x+y\right)+z\right]^2=\left[\left(x+y\right)^2+2.\left(x+y\right)z+z^2\right]=x^2+2xy+y^2+2xz+2yz+z^2\)\(+z^2\)

Thay vào: x^2+y^2+z^2+ 2xy+2yz+2xz - x^2 - y^2 - z^2= 2(xy+yz+xz) (đpcm)

21 tháng 5 2020

Ta có: 

\(x^3+y^3+z^3-3xyz\)

\(=\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz\)

\(=\left[\left(x+y\right)^3+z^3\right]-\left[3xy\left(x+y\right)+3xyz\right]\)

\(=\left(x+y+z\right)^3-3\left(x+y+z\right)\left(x+y\right).z-3xy\left(x+y+z\right)\)

\(=\left(x+y+z\right)\left(x^2+y^2+z^2+2xy+2xz+2yx-3xz-3yz-3xy\right)\)

\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)

=> \(x^3+y^3+z^3=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)+3xyz\)

27 tháng 3 2016

Từ đề bài suy ra:\(x^2+y^2+z^2-2xy+2xz-2yz\ge0\)

\(\left(x-y\right)^2+\left(x+z\right)^2+\left(y-z\right)^2\ge0\)

Đẳng thức này đúng với mọi số x,y,z

Vậy \(x^2+y^2+z^2\ge2\left(xy-xz+yz\right)\) (đpcm)

28 tháng 3 2016

x,y,z phải là các cạnh trong tam giác chơ

13 tháng 11 2019

Giúp mình với các bạn

27 tháng 12 2015

(x+y+z)^2-x^2-y^2-z^2=2

=x^2+y^2+z^2+2xy+2yz+2xz-x^2-y^2-z^2

=2xy+2yz+2xz=2(xy+yz+xz) (đpcm)

27 tháng 12 2015

(x+y+z)2-x2-y2-z2=2(xy+yz+zx)

x2+y2+z2+2xy+2yz+2zx-x2-y2-z2=2(xy+yz+zx)

\(\Rightarrow\)2xy+2yz+2zx=2(xy+yz+zx)

\(\Rightarrow\)2(xy+yz+zx)=2(xy+yz+zx)

vậy (x+y+z)2-x2-y2-z2=2(xy+yz+zx)
 

23 tháng 1 2017

Ta có \(xy+xz+yz=xyz\left(x+y+z\right)\)

\(\Leftrightarrow x+y+z=\frac{xy+xz+yz}{xyz}\left(1\right)\)

Ta lại có \(\frac{x^2-yz}{x\left(1-yz\right)}=\frac{y^2-xz}{y\left(1-xz\right)}\)

Áp dụng tính chất dãy tỉ số bằng nhau :

\(\frac{x^2-yz}{x\left(1-yz\right)}=\frac{y^2-xz}{y\left(1-xz\right)}=\frac{x^2-yz-y^2+xz}{x\left(1-yz\right)-y\left(1-xz\right)}=\frac{\left(x-y\right)\left(x+y\right)+z\left(x-y\right)}{x-y}=\frac{\left(x-y\right)\left(x+y+z\right)}{x-y}=x+y+z\left(2\right)\)

Từ (1) và (2)

\(\Rightarrow\frac{x^2-yz}{x\left(1-yz\right)}=\frac{y^2-xz}{y\left(1-xz\right)}\Leftrightarrow xy+xz+yz=xyz\left(x+y+z\right)\)

Vậy ta có đpcm