K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 9 2015

Có VT = a2 + 2ab + b2 + a2 - 2ab + b2 

= 2a2 + 2b2 = 2(a2 + b2) (= VP)

Vậy  (a + b)+ (a - b)= 2(a+ b2)

6 tháng 8 2017

Ta có :

(a + b + c)2 + a2 + b2 + c2 = (a + b)2 + (b + c)2 + (c + a)2

(a + b + c)2 + a2 + b2 + c2 = 2a2 + 2b2 + 2c2 + 2ab + 2bc + 2ca

(a + b + c)2 = a2 + b2 + c2 + 2ab + 2bc + 2ca        (1)

Lại có :

(a + b + c)2 = [(a + b) + c]2 

                  = (a + b)2 + 2c(a + b) + c2

                  = a2 + 2ab + b2 + 2ac + 2bc + c2 

                  = a2 + b2 + c2 + 2ab + 2bc + 2ca

Vậy , (1) đúng 

=> (a + b + c)2 + a2 + b2 + c2 = (a + b)2 + (b + c)2 + (c + a)2

12 tháng 9 2016

a, VP:-(b-a)3=-(b3-3b2a+3ba2-a3)=a3-3a2b+3ab2-b3=(a-b)3   Kết luận:VP=VT

 b, VT:(-a-b)2=[(-a)+(-b)]2=(-a)2+2(-a)(-b)+(-b)2=a2+2ab+b2=(a+b)2 Kết Luận:VT=VP

12 tháng 9 2016

Đổi dầu là được 

25 tháng 10 2020

           Bài làm :

Ta có :

\(\left(a^2+2017\right)\left(b^2+2017\right)\left(c^2+2017\right)\)

\(=\left(a^2+ab+bc+ca\right)\left(b^2+ab+bc+ca\right)\left(c^2+ab+bc+ca\right)\)

\(=\left[\left(a^2+ab\right)+\left(bc+ca\right)\right]\left[\left(b^2+ab\right)+\left(bc+ca\right)\right]\left[\left(c^2+bc\right)+\left(ab+ca\right)\right]\)

\(=\left[a\left(a+b\right)+c\left(b+a\right)\right]\left[b\left(b+a\right)+c\left(b+a\right)\right]\left[c\left(c+b\right)+a\left(b+c\right)\right]\)\(=\left(a+b\right)\left(c+a\right)\left(a+b\right)\left(b+c\right)\left(b+c\right)\left(c+a\right)\)

\(=\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2\)

=> Điều phải chứng minh

7 tháng 4 2017

\(a^2+b^2\ge2ab\)

\(\Rightarrow a^2-2ab+b^2\ge0\)

\(\Rightarrow\left(a-b\right)^2\ge0\) (luôn đúng)

Vậy \(a^2+b^2\ge2ab\)

Áp dụng vào ta được :

\(a^2+1\ge2a\)

\(b^2+1\ge2b\)

\(c^2+1\ge2c\)

\(\Rightarrow\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge2a.2b.2c=8abc\)(ĐPCM)

\(a^2+b^2+c^2+d^2+e^2\ge ab+ac+ad+ae\left(1\right)\)

\(\Leftrightarrow a^2+b^2+c^2+d^2+e^2-a\left(b-c-d-e\right)\ge0\)

\(\Leftrightarrow\left(b^2-ab+\frac{1}{4}a^2\right)+\left(c^2-ac+\frac{1}{4}a^2\right)+\left(d^2-ad+\frac{1}{4}a^2\right)+\left(e^2-ae+\frac{1}{4}a^2\right)\ge0\)

\(\Leftrightarrow\left(b+\frac{1}{2}a\right)^2+\left(c+\frac{1}{2}a\right)^2+\left(d+\frac{1}{2}a\right)^2+\left(e+\frac{1}{2}a\right)^2\ge0\left(2\right)\)

( 2 ) đúng => ( 1 ) đúng 

15 tháng 9 2017

Trieu Trong Thai

 CM a3+b3+c2 >= ab+bc+ac (*) 
2a^2 +2b^2 +2c^2 - 2ab -2bc -2ac = (a-b)^2 + (b-c)^2 + (a-c)^2 >= 0 

từ * => a^2 +b^2+c^2 +2ab+2bc+2ac >= 3ab+3bc+3ac <=> (a+b+c)^2 >= 3ab +3ac+3bc 
từ * => 2ab +2ac+2bc+ a^2+b^2+c^2 =< 3a^2+3b^2+3c^2 <=> (a+b+c)^2 =< ... 

15 tháng 9 2017

de bai sai sua lai la

\(a^3-b^3+ab\left(b-a\right)=\left(a-b\right)\left(a+b\right)^2\)

bien doi ve phai ta co:

\(\left(a-b\right)\left(a+b\right)^2\)

\(=a^3+ab^2-a^2b-b^3\)

\(=a^3-b^3+ab\left(b-a\right)\)= ve trai

vay \(a^3-b^3+ab\left(b-a\right)=\left(a-b\right)\left(a+b\right)^2\)

13 tháng 9 2017

Tham khảo nha \(\)

1. Rút gọn:

a/ \(\left(x-3\right)\left(x^2+3x+9\right)+\left(54+x^3\right)\)

= \(x^3+3x^2+9x-3x^2-9x-27+54+x^3\)

= \(2x^3+27\)

b/ \(\left(3x+y\right)\left(9x^2-3xy+y^2\right)-\left(3x-y\right)\left(9x^2+3xy+y^2\right)\)

\(=27x^3-9x^2y+3xy^2+9x^2y-3xy^2+y^3-27x^3+9x^2y+3xy^2-9x^2y-3xy^2-y^3\)

\(=\left(27x^3-y^3\right)-\left(27x^3+y^3\right)\)

\(=27x^3-y^3-27x^3-y^3=-2y^3\)

2.Chứng minh rằng:

a/ \(a^3+b^3=\left(a+b\right)^3-3ab\left(a+b\right)\)

Xét VP có:

\(=a^3+3a^2b+3ab^2+b^3-3a^2b-3ab^2\)

\(=a^3+b^3\)

=> VT=VP

=> \(a^3+b^3=\left(a+b\right)^3-3ab\left(a+b\right)\)

b/ \(a^3-b^3=\left(a-b\right)^3+3ab\left(a-b\right)\)

Xét VP có:

\(=a^3-3a^2b+3ab^2-b^3+3a^2b-3ab^2\)

\(=a^3-b^3\)

=> VT=VP

=> \(a^3-b^3=\left(a-b\right)^3+3ab\left(a-b\right)\)

Chúc bạn học tốt ♥
13 tháng 9 2017

khong bt ai hay sao ma con tra loi gium nua cho hung du sao van cam on

leuleu

11 tháng 4 2016
giup mik vs. Cau nao cux dk