K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 5 2016

Ta có : \(y'=x+\frac{1}{2}\left(\sqrt{x^2+1}+x\frac{x}{\sqrt{x^2+1}}\right)+\frac{\frac{1+\frac{x}{\sqrt{x^2+1}}}{2\sqrt{x+\sqrt{x^2+1}}}}{\sqrt{x+\sqrt{x^2+1}}}\)

                \(=x+\frac{2x^2+1}{2\sqrt{x^2+1}}+\frac{x+\sqrt{x^2+1}}{2\left(x+\sqrt{x^2+1}\right)\sqrt{x^2+1}}=x+\frac{2x^2+1}{2\sqrt{x^2+1}}+\frac{1}{2\sqrt{x^2+1}}\)

                \(=x+\frac{2\left(x^2+1\right)}{2\sqrt{x^2+1}}=x+\sqrt{x^2+1}\)

\(\Rightarrow\begin{cases}xy'+\ln y'=x\left(x+\sqrt{x^2+1}\right)+\ln\left(x+\sqrt{x^2+1}\right)=x^2+x\sqrt{x^2+1}+\ln\left(x+\sqrt{x^2+1}\right)\\2y=x^2+x\sqrt{x^2+1}+2\ln\sqrt{x+\sqrt{x^2+1}}=x^2+x\sqrt{x^2+1}+\ln\left(x+\sqrt{x^2+1}\right)\end{cases}\)

\(\Rightarrow2y=xy'+\ln y'\)\(\Rightarrow\) Điều phải chứng minh

12 tháng 5 2016

Ta có \(y'=\frac{\frac{1}{x}x\left(1-\ln x\right)-\left[1-\ln x+x\left(-\frac{1}{x}\right)\right]\left(1+\ln x\right)}{x^2\left(1-\ln x\right)^2}=\frac{1-\ln x+\ln x\left(1+\ln x\right)}{x^2\left(1-\ln x\right)^2}=\frac{1+\ln^2x}{x^2\left(1-\ln x\right)^2}\)

\(\Rightarrow\begin{cases}2x^2y'=2x^2\frac{1+\ln^2x}{x^2\left(1-\ln x\right)^2}=\frac{2\left(1+\ln^2x\right)}{\left(1-\ln x\right)^2}\\x^2y^2+1=x^2\frac{1+\ln^2x}{x^2\left(1-\ln x\right)^2}+1=\frac{\left(1+\ln^2x\right)}{\left(1-\ln x\right)^2}+1=\frac{2\left(1+\ln^2x\right)}{\left(1-\ln x\right)^2}\end{cases}\)

\(\Rightarrow2x^2y'=x^2y^2+1\Rightarrow\) Điều phải chứng minh

12 tháng 5 2016

Ta có : \(y=\frac{1}{1+x+\ln x}\Rightarrow y'=\frac{-\left(1+\frac{1}{x}\right)}{\left(1+x+\ln x\right)^2}=\frac{-\left(1+x\right)}{x\left(1+x+\ln x\right)^2}\)

\(\Rightarrow\begin{cases}xy'=\frac{-\left(1+x\right)}{\left(1+x+\ln x\right)^2}\\y\left(y\ln x-1\right)=\frac{1}{1+x+\ln x}\left(\frac{\ln}{1+x+\ln x}-1\right)=\frac{-\left(1+x\right)}{\left(1+x+\ln x\right)^2}\end{cases}\)

\(\Rightarrow xy'=y\left(y\ln x-1\right)\Rightarrow\) Điều phải chứng minh

HQ
Hà Quang Minh
Giáo viên
22 tháng 8 2023

a, Điều kiện: \(2^x\ne3\Rightarrow x\ne log_23\)

Vậy D = R \ \(log_23\)

b, Điều kiện: \(25-5^x\ge0\Rightarrow5^x\le5^2\Rightarrow x\le2\)

Vậy D = \((-\infty;2]\)

HQ
Hà Quang Minh
Giáo viên
22 tháng 8 2023

c, Điều kiện: \(\left\{{}\begin{matrix}x>0\\lnx\ne1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x>0\\x\ne e\end{matrix}\right.\)

Vậy D = \(\left(0;+\infty\right)\backslash\left\{e\right\}\)

d, Điều kiện: \(\left\{{}\begin{matrix}x>0\\1-log_3x\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x>0\\log_3x\le1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x>0\\x\le3\end{matrix}\right.\Rightarrow0< x\le3\)

Vậy D = \((0;3]\)

12 tháng 5 2016

Ta có : \(y=\ln\left(\frac{1}{1+x}\right)\Rightarrow y'=\frac{-\frac{1}{\left(1+x\right)^2}}{\frac{1}{1+x}}=\frac{-1}{1+x}\)

\(\Rightarrow\begin{cases}xy'+1=\frac{-x}{1+x}+1=\frac{1}{1+x}\\e^y=e^{\ln\left(\frac{1}{1+x}\right)}=\frac{1}{1+x}\end{cases}\)

\(\Rightarrow xy'+1=e^y\) (điều phải chứng minh)

HQ
Hà Quang Minh
Giáo viên
24 tháng 8 2023

\(a,4^x-2^{x+1}\ge0\\ \Leftrightarrow2^{x+1}\le2^{2x}\\ \Leftrightarrow x+1\le2x\\ \Leftrightarrow x\ge1\)

Tập xác định của hàm số là D = \([1;+\infty)\)

\(b,\left\{{}\begin{matrix}x>0\\1-ln\left(x\right)>0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x>0\\ln\left(x\right)< 1\end{matrix}\right.\\ \Leftrightarrow0< x< e\)

Tập xác định của hàm số là \(\left(0;e\right)\)

a: \(y'=4\cdot3x^2-3\cdot2x+2=12x^2-6x+2\)

b: \(y'=\dfrac{\left(x+1\right)'\left(x-1\right)-\left(x+1\right)\left(x-1\right)'}{\left(x-1\right)^2}=\dfrac{x-1-x-1}{\left(x-1\right)^2}=\dfrac{-2}{\left(x-1\right)^2}\)

c: \(y'=-2\cdot\left(\sqrt{x}\cdot x\right)'\)

\(=-2\cdot\left(\dfrac{x+x}{2\sqrt{x}}\right)=-2\cdot\dfrac{2x}{2\sqrt{x}}=-2\sqrt{x}\)

d: \(y'=\left(3sinx+4cosx-tanx\right)\)'

\(=3cosx-4sinx+\dfrac{1}{cos^2x}\)

e: \(y'=\left(4^x+2e^x\right)'\)

\(=4^x\cdot ln4+2\cdot e^x\)

f: \(y'=\left(x\cdot lnx\right)'=lnx+1\)

5 tháng 5 2016

Ta có : \(y'=\frac{-1-\frac{1}{x}}{\left(1+x+\ln x\right)^2}=-\frac{x+1}{x\left(1+x+\ln x\right)^2}\) 

        \(\Rightarrow xy'=-\frac{x+1}{\left(1+x+\ln x\right)^2}\)    (1)

Lại có \(y\left(y\ln x-1\right)=\frac{-1-x}{\left(1+x+\ln x\right)^2}\)   (2)

Từ (1) và (2) suy ra \(xy'=y\left(y\ln x-1\right)\)

a: \(y'=\left(x^2+2x\right)'\left(x^3-3x\right)+\left(x^2+2x\right)\left(x^3-3x\right)'\)

\(=\left(2x+2\right)\left(x^3-3x\right)+\left(x^2+2x\right)\left(3x^2-3\right)\)

\(=2x^4-6x^2+2x^3-6x+3x^4-3x^2+6x^3-6x\)

\(=5x^4+8x^3-9x^2-12x\)

b: y=1/-2x+5 

=>\(y'=\dfrac{2}{\left(2x+5\right)^2}\)

c: \(y'=\dfrac{\left(4x+5\right)'}{2\sqrt{4x+5}}=\dfrac{4}{2\sqrt{4x+5}}=\dfrac{2}{\sqrt{4x+5}}\)

d: \(y'=\left(sinx\right)'\cdot cosx+\left(sinx\right)\cdot\left(cosx\right)'\)

\(=cos^2x-sin^2x=cos2x\)

e: \(y=x\cdot e^x\)

=>\(y'=e^x+x\cdot e^x\)

f: \(y=ln^2x\)

=>\(y'=\dfrac{\left(-1\right)}{x^2}=-\dfrac{1}{x^2}\)

12 tháng 5 2016

Ta có : \(y=\sin\left(\ln x\right)+\cos\left(\ln x\right)\Rightarrow\begin{cases}y'=\frac{1}{x}\cos\left(\ln x\right)-\frac{1}{x}\sin\left(\ln x\right)=\frac{\cos\left(\ln x\right)-\sin\left(\ln x\right)}{x}\\y"=\frac{\left[-\frac{1}{x}\sin\left(\ln x\right)-\frac{1}{x}\cos\left(\ln x\right)\right]x-\left[\cos\left(\ln x\right)-\sin\left(\ln x\right)\right]}{x^2}=\frac{-2\cos\left(\ln x\right)}{x^2}\end{cases}\)

\(\Rightarrow y+xy'+x^2y"=\sin\left(\ln x\right)+\cos\left(\ln x\right)+\cos\left(\ln x\right)-\sin\left(\ln x\right)-2\cos\left(\ln x\right)=0\)

=> Điều cần chứng minh