Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có:
\(n\left(2n-3\right)-2n\left(n+1\right)\)
\(=2n^2-3n-2n^2-2n\)
\(=-5n\)
Vì \(-5n⋮5\) với n thuộc Z
\(\Rightarrow n\left(2n-3\right)-2n\left(n+1\right)⋮5\) với n thuộc Z
b) Ta có:
\(\left(n^2+3n-1\right)\left(n+2\right)-n^3+2\)
\(=n^3+3n^2-n+2n^2+6n-2-n^3+2\)
\(=5n^2+5n\)
\(=5\left(n^2+n\right)\)
Vì \(5\left(n^2+n\right)⋮5\)
\(\Rightarrow\left(n^2+3n-1\right)\left(n+2\right)-n^3+2⋮5\)
c) Ta có:
\(\left(xy-1\right)\left(x^{2003}+y^{2003}\right)-\left(xy+1\right)\left(x^{2003}-y^{2003}\right)\)
\(=\left(xy+1-2\right)\left(x^{2003}+y^{2003}\right)-\left(xy+1\right)\left(x^{2003}-y^{2003}\right)\)
\(=\left(xy+1\right)\left(x^{2003}+y^{2003}\right)-2\left(x^{2003}+y^{2003}\right)-\left(xy+1\right)\left(x^{2003}-y^{2003}\right)\)
\(=\left(xy+1\right)\left(x^{2003}+y^{2003}-x^{2003}+y^{2003}\right)-2\left(x^{2003}+y^{2003}\right)\)
\(=2\left(xy+1\right)y^{2003}-2\left(x^{2003}+y^{2003}\right)\)
Vì \(2\left(xy+1\right)y^{2003}⋮2\)
\(2\left(x^{2003}+y^{2003}\right)⋮2\)
\(\Rightarrow2\left(xy+1\right)y^{2003}-2\left(x^{2003}+y^{2003}\right)⋮2\)
\(\Rightarrow\left(xy-1\right)\left(x^{2003}+y^{2003}\right)-\left(xy+1\right)\left(x^{2003}-y^{2003}\right)⋮2\)
A= x2-2x = ( x2-2x + 1 ) - 1 = -1 (x-1)2 . Vì (x-1)2 lớn hơn hoặc bằng 0 ==> Min A = 1. Khi x = 1
B = -( x2- 4x + 4 +1) = -1-(x-2)2 < -1 ==> Max B = - 1 khi x = 2
Phân tích đa thức x4 + 6x3+11x2+6x = x(x+1)(x+2)(x+3) thành nhân tử tích của 4 số tự nhiên liên tiếp chia hết cho 24
Phân tích ra hai đa thức chứ cùng một đa thức là \(x^2+x+1\) nên P(x) chia hết cho Q(x) với x thuộc Z
x^5-x
=x(x^4-1)
=x(x^2-1)(x^2+1)
=(x-1)x(x+1)(x^2+1)
mà x+1;x; x-1 là 3 số nguyên liên tiếp
=>x^5-x chia hết cho 6
p/s: cái này nâng cao hơn là chia hết cho 30
a) Ta có:
M = 3x(x - 5y) + (y - 5x)(-3y) - 3(x2 - y2) - 1
M = 3x2 - 15xy - 3y2 + 15xy - 3x2 + 3y2 - 1
M = (3x2 - 3x2) - (15xy - 15xy) - (3y2 - 3y2) - 1
M = -1
=> Biểu thức M có giá trị ko phụ thuộc vào biến x,y
b) Ta có: S = 1 + x + x2 + x3 + x4 + x5
x.S = x(1 + x + x2 + x3 + x4 + x5)
x.S = x + x2 + x3 + x4 + x5 + x6
xS - S = (x + x2 + x3 + x4 + x5 + x6) - (1 + x + x2 + x3 + x4 + x5)
xS - S = x6 - 1 => đpcm
a) M = 3x(x - 5y) + (y - 5x)(-3y) - 3(x2 - y2) - 1
M = 3x.x + 3x.(-5y) + y.(-3y) + (-5x).(-3y) + (-3).x2 + (-3).x2 + (-3).(-y2) - 1
M = 3x2 - 15xy - 3y2 + 15xy - 3x2 + 3y2 - 1
M = (3x2 - 3x2) + (-15xy + 15xy) + (-3y2 + 3y2) - 1
M = 0 + 0 - 1
M = -1
Vậy: biểu thức không phụ thuộc vào x và y